切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2025, Vol. 19 ›› Issue (04) : 217 -228. doi: 10.3877/cma.j.issn.1674-1366.2025.04.001

专家论坛

牙周再生材料研究进展及临床应用评估
潘耀忠, 赵戬, 潘亚萍()   
  1. 中国医科大学附属口腔医院牙周病科,沈阳 110002
  • 收稿日期:2025-04-14 出版日期:2025-08-01
  • 通信作者: 潘亚萍

Research progress and clinical performance assessments of periodontal regenerative materials

Yaozhong Pan, Jian Zhao, Yaping Pan()   

  1. Department of Periodontology, Affiliated Stomatological Hospital of China Medical University, Shenyang 110002, China
  • Received:2025-04-14 Published:2025-08-01
  • Corresponding author: Yaping Pan
  • Supported by:
    National Key R & D Program of China(2023YFC2506302)
引用本文:

潘耀忠, 赵戬, 潘亚萍. 牙周再生材料研究进展及临床应用评估[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(04): 217-228.

Yaozhong Pan, Jian Zhao, Yaping Pan. Research progress and clinical performance assessments of periodontal regenerative materials[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2025, 19(04): 217-228.

牙周炎导致牙槽骨吸收破坏,严重影响患者的咀嚼功能和美观。为了修复及再生牙周组织缺损,牙周再生治疗技术不断发展进步,各种植骨材料、生物制剂和诱导成骨类药物得到广泛应用。根据手术目的、骨破坏条件及局部环境的不同,植骨材料的选择也不尽相同。本文系统介绍目前临床的牙周植骨材料及近年新材料的研究进展和应用评估。

Periodontitis-induced alveolar bone resorption and destruction significantly compromise patients′ masticatory function and aesthetics. To reconstruct and regenerate periodontal tissue defects, periodontal regenerative therapies have advanced continuously, with extensive clinical application of various bone grafts, biologic, and osteoinductive pharmacological agents. The selection of bone grafts varies depending on the surgical objectives, extent of bone destruction, and local microenvironmental conditions. This article comprehensively reviews current clinical applications of periodontal bone grafting materials and evaluates recent research progress in novel biomaterials, along with their clinical performance assessments.

表1 自体骨及自体牙本质移植材料特性
表2 同种异体骨及异种骨特性
表3 人工合成材料特性
表4 生物制剂及诱导成骨类药物特性
移植物类型 来源 优点 缺点 成骨特性 类似材料 研究阶段 研究类型 循证医学证据等级
生物制剂 自体血或动物基质提取、基因工程技术重组等方式 促进组织愈合与再生、生物相容性高 在体内的长期疗效及安全性仍需进一步研究 骨传导性、骨诱导性 - - - -
富血小板血浆 自体血 早期快速释放生长因子 外源性添加物可能引起免疫和感染反应 中等骨诱导性 - 临床广泛应用 随机对照临床试验 1级
富血小板纤维蛋白 自体血 细胞因子种类呈现更显著的多样性特征 对硬组织修复的具体作用机制仍缺乏足够的研究数据支持 高骨诱导性 浓缩生长因子 临床广泛应用 随机对照临床试验 1级
血小板源性生长因子(PDGF) 通过基因工程技术生产重组PDGF 增强牙周膜干细胞和牙槽骨细胞的增殖和趋化性,实现牙周组织再生 获取费用较高 低骨诱导性 - 临床广泛应用 随机对照临床试验 1级
骨形成蛋白 从牛骨基质、人牙基质中提取 具备诱导骨和软骨形成能力、有效促进牙周组织再生 可能会对骨形成过程产生负面影响并存在术后牙根吸收 低骨传导性(有胶原蛋白载体)、低骨诱导性 - 临床试验初期 随机对照临床试验 1级
碱性成纤维细胞生长因子(bFGF) 通过基因工程技术,制备重组人bFGF 能有效促进软骨和牙周膜干细胞细胞增殖、迁移和分化 体内半衰期短、酸性环境稳定性差 低骨诱导性 - 临床试验初期 随机对照临床试验 1级
釉基质蛋白衍生物 猪牙釉质层提取纯化 促进牙周组织再生 国内尚未上市,价格较高,来源有限 中等骨诱导性 - 临床广泛应用 随机对照临床试验 1级
诱导成骨类药物 药物 促进骨合成和代谢,改善骨缺损 多处于研究阶段,还需要长期观察 骨诱导性 - 临床试验初期 随机对照临床试验 1级
图1 移植物选择决策图
表5 移植物选择的临床考量因素
[1]
Liu JRuan JWeir MD,et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells[J]. Cells20198(6):537. DOI:10.3390/cells8060537.
[2]
Ni CZhou JKong N,et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment[J]. Biomaterials2019206:115-132. DOI:10.1016/j.biomaterials.2019.03.039.
[3]
Elango JSelvaganapathy PRLazzari G,et al. Biomimetic collagen-sodium alginate-titanium oxide(TiO2)3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration[J]. Int J Biol Macromol2020163:9-18. DOI:10.1016/j.ijbiomac.2020.06.173.
[4]
赵海礁,潘亚萍.重度牙周炎患者牙槽骨丧失特点及后期种植治疗的考量[J].中华口腔医学杂志202358(3):298-304. DOI:10.3760/cma.j.cn112144-20230109-00009.
[5]
Haugen HJLyngstadaas SPRossi F,et al. Bone grafts:Which is the ideal biomaterial?[J]. J Clin Periodontol201946(Suppl 21):92-102. DOI:10.1111/jcpe.13058.
[6]
Mckenna GJGjengedal HHarkin J,et al. Effect of autogenous bone graft site on dental implant survival and donor site complications:A systematic review and Meta-analysis[J]. J Evid Based Dent Pract202222(3):101731. DOI:10.1016/j.jebdp.2022.101731.
[7]
Alshujaa BTalmac ACAltindal D,et al. Clinical and radiographic evaluation of the use of PRF,CGF,and autogenous bone in the treatment of periodontal intrabony defects:Treatment of periodontal defect by using autologous products[J]. J Periodontol202495(8):729-739. DOI:10.1002/JPER.23-0481.
[8]
Moukrioti JAl-Nawas BKreisler M. Evaluation of the split bone technique for lateral ridge augmentation:A retrospective case-control study[J]. Int J Oral Maxillofac Implants201934(5):1152-1160. DOI:10.11607/jomi.7470.
[9]
Kim YKKim SGYun PY,et al. Autogenous teeth used for bone grafting:A comparison with traditional grafting materials [J]. Oral Surg Oral Med Oral Pathol Oral Radiol2014117(1):e39-e45. DOI:10.1016/j.oooo.2012.04.018.
[10]
Santos ABotelho JMachado V,et al. Autogenous mineralized dentin versus xenograft granules in ridge preservation for delayed implantation in post-extraction sites:A randomized controlled clinical trial with an 18 months follow-up[J]. Clin Oral Implants Res202132(8):905-915. DOI:10.1111/clr.13765.
[11]
Zhang RRuangsawasdi NPumpaluk P,et al. Bone regeneration property of tooth-derived bone substitute prepared chairside for periodontal bone defects:An experimental study[J]. BMC Oral Health202323(1):863. DOI:10.1186/s12903-023-03582-y.
[12]
Schwarz FGolubovic VBecker K,et al. Extracted tooth roots used for lateral alveolar ridge augmentation:A proof-of-concept study[J]. J Clin Periodontol201643(4):345-353. DOI:10.1111/jcpe.12481.
[13]
Spin-Neto RStavropoulos AColetti FL,et al. Graft incorporation and implant osseointegration following the use of autologous and fresh-frozen allogeneic block bone grafts for lateral ridge augmentation[J]. Clin Oral Implants Res201425(2):226-233. DOI:10.1111/clr.12107.
[14]
Dias RRSehn FPde Santana ST,et al. Corticocancellous fresh-frozen allograft bone blocks for augmenting atrophied posterior mandibles in humans[J]. Clin Oral Implants Res201627(1):39-46. DOI:10.1111/clr.12509.
[15]
Kothiwale SBhimani RKaderi M,et al. Comparative study of DFDBA and FDBA block grafts in combination with chorion membrane for the treatment of periodontal intra-bony defects at 12 months post surgery[J]. Cell Tissue Bank2019. DOI:10.1007/s10561-018-09744-5.
[16]
Kungvarnchaikul ISubbalekha KSindhavajiva PR,et al. Deproteinized bovine bone and freeze-dried bone allograft in sinus floor augmentation:A randomized controlled trial[J]. Clin Implant Dent Relat Res202325(2):343-351. DOI:10.1111/cid.13179.
[17]
Alshoiby MMFawzy El-Sayed KMElbattawy W,et al. Injectable platelet-rich fibrin with demineralized freeze-dried bone allograft compared to demineralized freeze-dried bone allograft in intrabony defects of patients with stage-Ⅲ periodontitis:A randomized controlled clinical trial[J]. Clin Oral Investig202327(7):3457-3467. DOI:10.1007/s00784-023-04954-y.
[18]
Borg TDMealey BL. Histologic healing following tooth extraction with ridge preservation using mineralized versus combined mineralized-demineralized freeze-dried bone allograft:A randomized controlled clinical trial[J]. J Periodontol201586(3):348-355. DOI:10.1902/jop.2014.140483.
[19]
Kim HHan HSGhanaati S,et al. Alveolar ridge preservation using a collagenated xenograft:A randomized clinical trial[J]. Int Dent J202575(2):1155-1164. DOI:10.1016/j.identj.2024.07.015.
[20]
Oh SChung SHHan JY. Periodontal regenerative therapy in endo-periodontal lesions:A retrospective study over 5 years[J]. J Periodontal Implant Sci201949(2):90-104. DOI:10.5051/jpis.2019.49.2.90.
[21]
Lee JHJeong SN. Long-term stability of adjunctive use of enamel matrix protein derivative on porcine-derived xenograft for the treatment of one-wall intrabony defects:A 4-year extended follow-up of a randomized controlled trial[J]. J Periodontol202293(2):229-236. DOI:10.1002/JPER.21-0254.
[22]
Kim CSChoi SHCho KS,et al. Periodontal healing in one- wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial[J]. J Clin Periodontol200532(6):583-589. DOI:10.1111/j.1600-051X.2005.00729.x.
[23]
Bista SAdhikari KBaniya BK. Comparative evaluation of hydroxyapatite bone alloplast with combination bone alloplast (hydroxyapatitie and β-tricalcium phosphate)in Grade Ⅱ mandibular furcation involvements[J]. J Nepal Health Res Counc202220(2):510-516. DOI:10.33314/jnhrc.v20i02.3796.
[24]
Dewi AHAna ID. The use of hydroxyapatite bone substitute grafting for alveolar ridge preservation,sinus augmentation,and periodontal bone defect:A systematic review[J]. Heliyon20184(10):e00884. DOI:10.1016/j.heliyon.2018.e00884.
[25]
Liu CCSolderer AHeumann C,et al. Tricalcium phosphate (-containing)biomaterials in the treatment of periodontal infra-bony defects:A systematic review and Meta-analysis[J]. J Dent2021114:103812. DOI:10.1016/j.jdent.2021.103812.
[26]
Klimecs VGrishulonoks ASalma I,et al. Bone loss around dental implants 5 years after implantation of biphasic calcium phosphate(HAp/βTCP)granules[J]. J Healthc Eng2018:4804902. DOI:10.1155/2018/4804902.
[27]
Rattanpornsompong KRattanaprukskul KPrachanukoon S,et al. Influence of alloplastic materials,biologics,and their combinations,along with defect characteristics,on short-term intrabony defect surgical treatment outcomes:A systematic review and network meta-analysis[J]. BMC Oral Health202525(1):413. DOI:10.1186/s12903-025-05782-0.
[28]
Fernandez de Grado GKeller LIdoux-Gillet Y,et al. Bone substitutes:A review of their characteristics,clinical use,and perspectives for large bone defects management[J]. J Tissue Eng20189:2041731418776819. DOI:10.1177/2041731418776819.
[29]
Mohammed AAElsherbini AMIbrahim FM,et al. Biological effect of the nanocrystalline calcium sulfate bone graft in the periodontal regeneration[J]. J Oral Biol Craniofac Res202111(1):47-52. DOI:10.1016/j.jobcr.2020.10.012.
[30]
Pal PCBali ABoyapati R,et al. Regenerative potential of biphasic calcium phosphate and enamel matrix derivatives in the treatment of isolated interproximal intrabony defects:A randomized controlled trial[J]. J Yeungnam Med Sci202239(4):322-331. DOI:10.12701/jyms.2022.00325.
[31]
Cannillo VSalvatori RBergamini S,et al. Bioactive glasses in periodontal regeneration:Existing strategies and future prospects—A literature review[J]. Materials(Basel)202215(6):2194. DOI:10.3390/ma15062194.
[32]
Saleem MPisani FZahid FM,et al. Adjunctive platelet-rich plasma(PRP)in infrabony regenerative treatment:A systematic review and RCT′s Meta-analysis[J]. Stem Cells Int2018:9594235. DOI:10.1155/2018/9594235.
[33]
Pham TAV. Intrabony defect treatment with platelet-rich fibrin,guided tissue regeneration and open-flap debridement:A randomized controlled trial[J]. J Evid Based Dent Pract202121(3):101545. DOI:10.1016/j.jebdp.2021.101545.
[34]
Xu YQiu JSun Q,et al. One-year results evaluating the effects of concentrated growth factors on the healing of intrabony defects treated with or without bone substitute in chronic periodontitis[J]. Med Sci Monit201925:4384-4389. DOI:10.12659/MSM.917025.
[35]
Rochira ASiculella LDamiano F,et al. Concentrated growth factors(CGF)induce osteogenic differentiation in human bone marrow stem cells[J]. Biology(Basel)20209(11):370. DOI:10.3390/biology9110370.
[36]
Tavelli LChen CJBarootchi S,et al. Efficacy of biologics for the treatment of periodontal infrabony defects:An American Academy of Periodontology best evidence systematic review and network Meta-analysis[J]. J Periodontol202293(12):1803-1826. DOI:10.1002/JPER.22-0120.
[37]
Khehra AChen CYKim DM. The long-term success of periodontal regeneration:A 10-year follow-up case report[J]. Quintessence Int202354(10):802-807. DOI:10.3290/j.qi.b4240197.
[38]
Li FYu FXu X,et al. Evaluation of recombinant human FGF-2 and PDGF-BB in periodontal regeneration:A systematic review and Meta-analysis[J]. Sci Rep20177(1):65. DOI:10.1038/s41598-017-00113-y.
[39]
Pranathi VKoduganti RRMuthyala S,et al. Evaluation of biomaterials in periodontal regeneration:A literature review[J]. Cureus202416(12):e75618. DOI:10.7759/cureus.75618.
[40]
Lee EMoy ANguyen T,et al. The effect of bone morphogenetic protein-2(BMP-2)on volumetric and histometric outcomes for peri-implant defects in the animal model:A systematic review and Meta-analysis[J]. Int J Oral Maxillofac Implants202338(4):651-666. DOI:10.11607/jomi.10027.
[41]
Freitas RMDSpin-Neto RMarcantonio Junior E,et al. Alveolar ridge and maxillary sinus augmentation using rhBMP-2:A systematic review[J]. Clin Implant Dent Relat Res201517 (Suppl 1):e192-e201. DOI:10.1111/cid.12156.
[42]
Kao DWKKubota ANevins M,et al. The negative effect of combining rhBMP-2 and Bio-Oss on bone formation for maxillary sinus augmentation[J]. Int J Periodontics Restorative Dent201232(1):61-67.
[43]
Kang WLiang QDu L,et al. Sequential application of bFGF and BMP-2 facilitates osteogenic differentiation of human periodontal ligament stem cells[J]. J Periodontal Res201954(4):424-434. DOI:10.1111/jre.12644.
[44]
Yoshinuma NKoshi RKawamoto K,et al. Periodontal regeneration with 0.3% basic fibroblast growth factor(FGF-2)for a patient with aggressive periodontitis:A case report[J]. J Oral Sci201658(1):137-140. DOI:10.2334/josnusd.58.137.
[45]
Rambhia KJSun HFeng K,et al. Nanofibrous 3D scaffolds capable of individually controlled BMP and FGF release for the regulation of bone regeneration[J]. Acta Biomater2024190:50-63. DOI:10.1016/j.actbio.2024.10.044.
[46]
Matsuura TMikami RMizutani K,et al. Assessment of bone defect morphology for the adjunctive use of bone grafting combined with enamel matrix derivative:A 3-year cohort study [J]. J Periodontol202495(9):809-820. DOI:10.1002/JPER.23-0538.
[47]
Fan LWu D. Enamel matrix derivatives for periodontal regeneration:Recent developments and future perspectives[J]. J Healthc Eng2022:8661690. DOI:10.1155/2022/8661690.
[48]
Apicella AHeunemann PDejace L,et al. Scaffold requirements for periodontal regeneration with enamel matrix derivative proteins[J]. Colloids Surf B Biointerfaces2017156:221-226. DOI:10.1016/j.colsurfb.2017.05.013.
[49]
Wang CZWang YHLin CW,et al. Combination of a bioceramic scaffold and simvastatin nanoparticles as a synthetic alternative to autologous bone grafting[J]. Int J Mol Sci201819(12):4099. DOI:10.3390/ijms19124099.
[50]
Gautam KKapoor AMathur S,et al. Comparative evaluation of autogenous bone graft and autologous platelet-rich fibrin with and without 1.2 mg in situ rosuvastatin gel in the surgical treatment of intrabony defect in chronic periodontitis patients [J]. Contemp Clin Dent202213(1):69-77. DOI:10.4103/ccd.ccd_740_20.
[51]
Swami RKKolte APKolte RA. Clinico-radiographic comparative evaluation of 1% metformin gel plus platelet-rich fibrin over platelet-rich fibrin alone in the treatment of Grade Ⅱ furcation defects:A randomized controlled double-blind clinical trial[J]. J Periodontol202293(5):644-655. DOI:10.1002/JPER.21-0233.
[52]
Pradeep ARRao NSNaik SB,et al. Efficacy of varying concentrations of subgingivally delivered metformin in the treatment of chronic periodontitis:A randomized controlled clinical trial[J]. J Periodontol201384(2):212-220. DOI:10.1902/jop.2012.120025.
[53]
Bashutski JDEber RMKinney JS,et al. Teriparatide and osseous regeneration in the oral cavity[J]. N Engl J Med2010363(25):2396-2405. DOI:10.1056/NEJMoa1005361.
[54]
Tinto MSartori MPizzi I,et al. Melatonin as host modulating agent supporting nonsurgical periodontal therapy in patients affected by untreated severe periodontitis:A preliminary randomized,triple-blind,placebo-controlled study[J]. J Periodontal Res202055(1):61-67. DOI:10.1111/jre.12686.
[55]
Gonde NPRathod SRKolte AP. Comparative evaluation of 1% melatonin gel in the treatment of intrabony defect:A randomized controlled clinical trial[J]. J Periodontol202293(12):1878-1888. DOI:10.1002/JPER.21-0515.
[56]
Dhande SKRathod SRKolte AP,et al. Clinicoradiographic comparative evaluation of 1% melatonin gel plus platelet-rich fibrin over platelet-rich fibrin alone in treatment of Grade Ⅱ furcation defects:A randomized controlled double-blind clinical trial[J]. J Periodontol202495(8):707-717. DOI:10.1002/JPER.23-0282.
[57]
Chambrone LAvila-Ortiz GValenzuela FSG. Tissues:Critical issues in periodontal and implant-related plastic and reconstructive surgery[M]. 2022.

URL    
[58]
Avila-Ortiz GAmbruster JBarootchi S,et al. American Academy of Periodontology best evidence consensus statement on the use of biologics in clinical practice[J]. J Periodontol202293(12):1763-1770. DOI:10.1002/JPER.23-0282.
[59]
Miron RJMoraschini VEstrin N,et al. Autogenous platelet concentrates for treatment of intrabony defects:A systematic review with Meta-analysis[J]. Periodontol 20002025,97(1):153-190. DOI:10.1111/prd.12598.
[60]
Fukuba SOkada MNohara K,et al. Alloplastic bone substitutes for periodontal and bone regeneration in dentistry:Current status and prospects[J]. Materials(Basel)202114(5):1096. DOI:10.3390/ma14051096.
[61]
Lee JYNa HJKim HM,et al. Comparative study of rhPDGF-BB plus equine-derived bone matrix versus rhPDGF-BB plus β-TCP in the treatment of periodontal defects[J]. Int J Periodontics Restorative Dent201737(6):825-832. DOI:10.11607/prd.3401.
[62]
Deng YLiang YLiu X. Biomaterials for periodontal regeneration [J]. Dent Clin North Am202266(4):659-672. DOI:10.1016/j.cden.2022.05.011.
[63]
Aytac ZDubey NDaghrery A,et al. Innovations in craniofacial bone and periodontal tissue engineering:From electrospinning to converged biofabrication[J]. Int Mater Rev202267(4):347-384. DOI:10.1080/09506608.2021.1946236.
[64]
Wang WZhang GWang Y,et al. An injectable and thermosensitive hydrogel with nano-aided NIR-Ⅱ phototherapeutic and chemical effects for periodontal antibacteria and bone regeneration[J]. J Nanobiotechnology202321(1):367. DOI:10.1186/s12951-023-02124-6.
[1] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J/OL]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[2] 李嘉怡, 武楠. 基于基因表达数据库筛选牙周炎与非酒精性脂肪性肝炎的潜在共同关键基因[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 170-180.
[3] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[4] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[5] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[6] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[7] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[8] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[9] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[10] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[11] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[12] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J/OL]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[13] 靳寿璐, 刘军, 吴阳, 周倩, 陈洁. 溃疡性结肠炎的药物联合治疗研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 145-149.
[14] 李翔, 刘堂盛. 奥硝唑联合牙周基础治疗老年2型糖尿病患者慢性牙周炎疗效分析[J/OL]. 中华老年病研究电子杂志, 2023, 10(03): 39-42.
[15] 周艳, 赵梦扬, 乔彤, 蔡颖. 人工智能辅助口腔环境管理模式在颈动脉狭窄合并牙周炎患者中的应用研究[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 528-534.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?