切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 211 -218. doi: 10.3877/cma.j.issn.1674-1366.2024.04.001

青年编委专栏

内质网应激介导的牙周炎骨改建失衡的研究进展
孙鸿坤1, 艾虹1, 陈正1,()   
  1. 1. 中山大学附属第三医院口腔医学中心,广州 510630
  • 收稿日期:2024-03-12 出版日期:2024-08-01
  • 通信作者: 陈正

Advances in endoplasmic reticulum stress-mediated bone remodeling imbalance in periodontitis

Hongkun Sun1, Hong Ai1, Zheng Chen1,()   

  1. 1. Center of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2024-03-12 Published:2024-08-01
  • Corresponding author: Zheng Chen
  • Supported by:
    National Natural Science Foundation of China(82271021); Science and Technology Planning Project of Guangzhou(2024A03J0098); Sun Yat-sen University Basic Scientific Research Business Fund for Young Teachers Training Project(23qnpy143)
引用本文:

孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.

Hongkun Sun, Hong Ai, Zheng Chen. Advances in endoplasmic reticulum stress-mediated bone remodeling imbalance in periodontitis[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(04): 211-218.

牙周炎是以牙周组织破坏为特征的慢性感染性疾病,宿主的免疫反应是导致附着丧失、牙槽骨吸收的重要原因。蛋白合成负荷过重时,易产生未折叠或错误折叠蛋白,其在内质网内腔积聚后产生内质网应激(ERS)。虽然细胞可以通过相关通路诱发非折叠蛋白应答反应(UPR)缓解ERS,但在牙周炎病理环境下,ERS不可避免地持续存在,而与之互作的UPR会介导促炎转录程序并诱发细胞凋亡,导致骨改建失衡、牙槽骨质丢失。本文就ERS介导的牙周炎骨改建失衡及其潜在治疗靶点相关研究进行回顾,以进一步了解ERS在牙周炎骨代谢及治疗中的作用和意义。

Periodontitis is a chronic infectious disease characterized by the destruction of periodontal tissue. The host's immune response is an important cause of attachment loss and alveolar bone resorption. When protein synthesis is overloaded, it is easy to produce unfolded or misfolded proteins which accumulate in the endoplasmic reticulum lumen and cause endoplasmic reticulum stress (ERS). Although the cells can induce an unfolded protein response (UPR) to mitigate ERS through related pathways, ERS inevitably persists in the pathological environment of periodontitis, and the interacting UPR can mediate pro-inflammatory transcriptional procedures and induce apoptosis, leading to the imbalance of bone remodeling and alveolar bone loss. This article reviewed the studies on ERS mediated bone remodeling imbalance in periodontitis and its potential therapeutic targets in order to further understand the role and significance of ERS in bone metabolism and treatment of periodontitis.

图1 内质网应激(ERS)通过非折叠蛋白应答反应(UPR)的代偿途径 肌醇必需酶1α(IRE1α)-X盒结合蛋白1(XBP1)通路:XBP1的mRNA被IRE1α激活的核酸内切酶剪切为X盒结合蛋白1剪接体(XBP1s)后,进入细胞核,与内质网应激反应元件(ERSE)结合,启动UPR;内质网膜蛋白激酶(PERK)-真核生物起始因子2的α亚基(eIF2α)通路:磷酸化的PERK促进eIF2α磷酸化,磷酸化eIF2α能够暂时抑制蛋白合成和新合成蛋白流入内质网,以缓解ERS[13];活化转录因子6(ATF6)通路:ATF6通过高尔基体定位信号转移至高尔基体中,被位点1蛋白酶(S1P)和位点2蛋白酶(S2P)剪切,剪切成的片段进入胞核结合ERSE,启动UPR靶基因的转录[17],本图由Figdraw绘制。
图2 持续的内质网应激(ERS)经非折叠蛋白应答反应(UPR)通路介导的骨改建失衡 肌醇必需酶1α(IRE1α)-X盒结合蛋白1(XBP1)通路:活化IRE-1α与TNF受体相关因子2(TRAF2)结合后激活细胞凋亡信号调节激酶1(ASK1),三者形成复合物后激活c-Jun氨基末端蛋白激酶(JNK)信号通路,介导细胞凋亡[29];内质网膜蛋白激酶(PERK)-真核生物起始因子2的α亚基(eIF2α)通路中:持续活化的PERK通过促进转录激活因子4(ATF4)mRNA的表达,上调CCAAT增强子结合蛋白同源蛋白(CHOP)基因,表达关键凋亡因子CHOP,其使eIF2α去磷酸化,致该通路代偿失效,加剧内质网应激(ERS),形成恶性循环,进而诱导细胞凋亡。CHOP可通过激活内质网氧化还原酶-1α改变内质网氧化还原状态,上调活性氧水平(ROS),触发Ca2+释放,诱导细胞凋亡[15];活化转录因子6(ATF6)通路:持续表达的X盒结合蛋白1剪接体(XBP1s)将促进NF-κB受体激活蛋白配体(RANKL)的表达,RANKL激活内质网膜上cAMP应答元件结合蛋白H(CREBH),使其进入胞核,促进活化T细胞核因子1蛋白(NFACT1)的表达,进而促进破骨细胞的分化[36,37],本图由Figdraw绘制。
表1 抑制间充质干细胞内质网应激(ERS)水平的调控靶点
[29]
Gebert MSobolewska ABartoszewska S,et al. Genome-wide mRNA profiling identifies X-box-binding protein 1(XBP1)as an IRE1 and PUMA repressor[J]. Cell Mol Life Sci202178(21-22):7061-7080. DOI:10.1007/s00018-021-03952-1.
[30]
Dhanasekaran DNReddy EP. JNK signaling in apoptosis[J]. Oncogene200827(48):6245-6251. DOI:10.1038/onc.2008.301.
[31]
Zhang LLu ZZhao X. Targeting Bcl-2 for cancer therapy[J]. Biochim Biophys Acta Rev Cancer20211876(1):188569. DOI:10.1016/j.bbcan.2021.188569.
[32]
Cui ZQin RFeng J,et al. XBP1s gene of endoplasmic reticulum stress enhances proliferation and osteogenesis of human periodontal ligament cells[J]. Tissue Cell202383:102139. DOI:10.1016/j.tice.2023.102139.
[33]
Shirakawa KMaeda SGotoh T,et al. CCAAT/enhancer-binding protein homologous protein(CHOP)regulates osteoblast differentiation[J]. Mol Cell Biol200626(16):6105-6116. DOI:10.1128/MCB.02429-05.
[34]
Iyer SMelendez-Suchi CHan L,et al. Elevation of the unfolded protein response increases RANKL expression[J]. FASEB BioAdv20202(4):207-218. DOI:10.1096/fba.2019-00032.
[35]
Cao WZhang TFeng R,et al. Hoxa5 alleviates obesity-induced chronic inflammation by reducing ER stress and promoting M2 macrophage polarization in mouse adipose tissue[J]. J Cellular Molecular Medi201923(10):7029-7042. DOI:10.1111/jcmm.14600.
[36]
Kim JHKim KKim I,et al. Endoplasmic reticulum-bound transcription factor crebh stimulates RANKL-Induced osteoclastogenesis[J]. J Immunol2018200(5):1661-1670. DOI:10.4049/jimmunol.1701036.
[37]
Wang ZLiu NZhou G,et al. Expression of XBP1s infibroblasts is critical for TiAl6V4 particle-induced RANKL expression and osteolysis[J]. J Orthop Res201735(4):752-759. DOI:10.1002/ior.23056.
[38]
Du NWu KZhang J,et al. Inonotsuoxide B regulates M1 to M2 macrophage polarization through sirtuin-1/endoplasmic reticulum stress axis[J]. Int Immunopharmacol202196:107603. DOI:10.1016/j.intimp.2021.107603.
[39]
Yang FWang SLiu Y,et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells[J]. Free Radic Biol Med2018124:395-407. DOI:10.1016/j.freeradbiomed.2018.06.043.
[40]
Yamazaki HHiramatsu NHayakawa K,et al. Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response[J]. J Immunol2009183(2):1480-1487. DOI:10.4049/jimmunol.0900017.
[41]
Victor PSarada DRamkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress:Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1[J]. Eur J Pharmacol2021892:173749. DOI:10.1016/j.ejphar.2020.173749.
[42]
Sepulveda DRojas-Rivera DRodríguez DA,et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α[J]. Molecular Cell201869(2):238-252.e7. DOI:10.1016/j.molcel.2017.12.028.
[43]
Li MHuang SZhang Y,et al. Regulation of the unfolded protein response transducer IRE1α by SERPINH1 aggravates periodontitis with diabetes mellitus via prolonged ER stress[J]. Cell Signal202291:110241. DOI:10.1016/j.cellsig.2022.110241.
[44]
Zheng JZhu XHe Y,et al. CircCDK8 regulates osteogenic differentiation and apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia[J]. Ann N Y Acad Sci20211485(1):56-70. DOI:10.1111/nyas.14483.
[45]
Tan JZhou LXue P,et al. Tumor necrosis factor-α attenuates the osteogenic differentiation capacity of periodontal ligament stem cells by activating PERK signaling[J]. J Periodontol201687(8):e159-e171. DOI:10.1902/jop.2016.150718.
[46]
Zhao XZhang GWu L,et al. Inhibition of ER stress-activated JNK pathway attenuates TNF-α-induced inflammatory response in bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun2021541:8-14. DOI:10.1016/j.bbrc.2020.12.101.
[47]
Chen YGuo YLi J,et al. Endoplasmic reticulum stress remodels alveolar bone formation after tooth extraction[J]. J Cell Mol Med202024(21):12411-12420. DOI:10.1111/jcmm.15753.
[48]
Yan GYuan YHe M,et al. m6A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells[J]. Mol Ther Nucleic Acids202019:421-436. DOI:10.1016/j.omtn.2019.12.001.
[49]
Zhang YGu XLi D,et al. METTL3 regulates osteoblast differentiation and inflammatory response via smad signaling and MAPK signaling[J]. Int J Mol Sci201921(1):199. DOI:10.3390/ijms21010199.
[50]
Feng ZWPeng BWang SH,et al. METTL3-mediated m6A modification of SOX4 regulates osteoblast proliferation and differentiation via YTHDF3 recognition[J]. Cell Signal2024115:111038. DOI:10.1016/j.cellsig.2024.111038.
[51]
Kong YZhang YCai Y,et al. METTL3 mediates osteoblast apoptosis by regulating endoplasmic reticulum stress during LPS-induced inflammation[J]. Cell Signal202295:110335. DOI:10.1016/j.cellsig.2022.110335.
[52]
Wu TLiu YCao Y,et al. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma[J]. Adv Mater202234(15):e2110364. DOI:10.1002/adma.202110364.
[53]
Shen ZKuang SZhang Y,et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater20205(4):1113-1126. DOI:10.1016/j.bioactmat.2020.07.002.
[54]
Cui YHong SXia Y,et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci(Weinh)202310(27):e2302029. DOI:10.1002/advs.202302029.
[55]
Ku LCSheu MLCheng HH,et al. Melatonin protects retinal integrity through mediated immune homeostasis in the sodium iodate-induced mouse model of age-related macular degeneration[J]. Biomed Pharmacother2023161:114476. DOI:10.1016/j.biopha.2023.114476.
[56]
Kang MHuang CCLu Y,et al. Bone regeneration is mediated by macrophage extracellular vesicles[J]. Bone2020141:115627. DOI:10.1016/j.bone.2020.115627.
[57]
Bouchareychas LDuong PCovarrubias S,et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo[J]. Cell Rep202032(2):107881. DOI:10.1016/j.celrep.2020.107881.
[58]
Nakao YFukuda TZhang Q,et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater2021122:306-324. DOI:10.1016/j.actbio.2020.12.046.
[59]
Li RLi DWang H,et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF[J]. Stem Cell Res Ther202213(1):149. DOI:10.1186/s13287-022-02823-1.
[60]
Trindade-da-Silva CABettaieb ANapimoga MH,et al. Soluble epoxide hydrolase pharmacological inhibition decreases alveolar bone loss by modulating host inflammatory response,RANK-related signaling,endoplasmic reticulum stress,and apoptosis[J]. J Pharmacol Exp Ther2017361(3):408-416. DOI:10.1124/jpet.116.238113.
[1]
Könönen EGursoy MGursoy UK. Periodontitis:A multifaceted disease of tooth-supporting tissues[J]. J Clin Med20198(8):1135. DOI:10.3390/jcm8081135.
[2]
Zou HZhou NHuang Y,et al. Phenotypes,roles,and modulation of regulatory lymphocytes in periodontitis and its associated systemic diseases[J]. J Leukoc Biol2022111(2):451-467. DOI:10.1002/JLB.3VMR0321-027RRR.
[3]
Herrera DBerglundh TSchwarz F,et al. Prevention and treatment of peri-implant diseases—The EFP S3 level clinical practice guideline[J]. J Clinic Periodontology202350(Suppl 26):4-76. DOI:10.1111/jcpe.13823.
[4]
Sculean ANikolidakis DNikou G,et al. Biomaterials for promoting periodontal regeneration in human intrabony defects:A systematic review[J]. Periodontology 2000201568(1):182-216. DOI:10.1111/prd.12086.
[5]
Shin YJVavra UStrasser R. Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants[J]. Plant Physiol2021186(4):1878-1892. DOI:10.1093/plphys/kiab181.
[6]
Wiseman RLMesgarzadeh JSHendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response[J]. Molecular Cell202282(8):1477-1491. DOI:10.1016/j.molcel.2022.03.025.
[7]
Chen XShi CHe M,et al. Endoplasmic reticulum stress:Molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther20238(1):352. DOI:10.1038/s41392-023-01570-w.
[8]
Chen XCubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment[J]. Nat Rev Cancer202121(2):71-88. DOI:10.1038/s41568-020-00312-2.
[9]
Briggs MDDennis EPDietmar HF,et al. New developments in chondrocyte ER-stress and related diseases[J]. F1000Res20209:F1000 Faculty Rev-290. DOI:10.12688/f1000research.22275.1.
[10]
Song XLi JJiao M,et al. Effect of endoplasmic reticulum stress-induced apoptosis in the role of periodontitis on vascular calcification in a rat model[J]. J Mol Histol202152(5):1097-1104. DOI:10.1007/s10735-021-10015-z.
[11]
Liu QGuo SHuang Y,et al. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway[J]. Oxid Med Cell Longev2022:4107915. DOI:10.1155/2022/4107915.
[12]
Li HDeng YTan M,et al. Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response[J]. Stem Cell Res Ther202011(1):215. DOI:10.1186/s13287-020-01732-5.
[13]
Ron DWalter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol20078(7):519-529. DOI:10.1038/nrm2199.
[14]
Yamada HNakajima TDomon H,et al. Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice[J]. J Periodontal Res201550(4):500-508. DOI:10.1111/jre.12232.
[15]
Hu HTian MDing C,et al. The C/EBP homologous protein (CHOP)transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]. Front Immunol20199:3083. DOI:10.3389/fimmu.2018.03083.
[16]
Calfon MZeng HUrano F,et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature2002415(6867):92-96. DOI:10.1038/415092a.
[17]
Estébanez Bde Paz JACuevas MJ,et al. Endoplasmic reticulum unfolded protein response,aging and exercise:An update[J]. Front Physiol20189:1744. DOI:10.3389/fphys.2018.01744.
[18]
Cao SSLuo KLShi L. Endoplasmic reticulum stress interacts with inflammation in human diseases[J]. J Cell Physiol2016231(2):288-294. DOI:10.1002/jcp.25098.
[19]
Feng YZhang RWang Y rong,et al. Inhibition of endoplasmic reticulum stress by 4-phenyl butyric acid presents therapeutic effects on periodontitis:Experimental studies in vitro and in rats[J]. Stem Cells Int2021:1-10. DOI:10.1155/2021/6618943.
[20]
Xue PLi BAn Y,et al. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation[J]. Cell Death Differ201623(11):1862-1872. DOI:10.1038/cdd.2016.74.
[21]
Bhattarai KRChaudhary MKim HR,et al. Endoplasmic reticulum(ER)stress response failure in diseases[J]. Trends Cell Biol202030(9):672-675. DOI:10.1016/j.tcb.2020.05.004.
[22]
Wang KNiu JKim H,et al. Osteoclast precursor differentiation by MCPIP via oxidative stress,endoplasmic reticulum stress,and autophagy[J]. J Mol Cell Biol20113(6):360-368. DOI:10.1093/jmcb/mjr021.
[23]
Lee WJeong JLee E,et al. Tacrolimus regulates endoplasmic reticulum stress-mediated osteoclastogenesis and inflammation:In vitro and collagen-induced arthritis mouse model[J]. Cell Biol Int201842(4):393-402. DOI:10.1002/cbin.10861.
[24]
Chen JChen JCheng Y,et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther202011(1):97. DOI:10.1186/s13287-020-01610-0.
[25]
张杨,王垭铮,费栋栋,等.炎性牙周膜干细胞通过调控巨噬细胞内质网应激介导白介素-1β分泌的研究[J].中华口腔医学杂志202156(4):329-334. DOI:10.3760/cma.j.cn112144-20201105-00553.
[26]
Garaicoa-Pazmino CFretwurst TSquarize CH,et al. Characterization of macrophage polarization in periodontal disease[J]. J Clinic Periodontology201946(8):830-839. DOI:10.1111/jcpe.13156.
[27]
Kourtzelis ILi XMitroulis I,et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation[J]. Nat Immunol201920(1):40-49. DOI:10.1038/s41590-018-0249-1.
[28]
Díaz-Bulnes PSaiz MLLópez-Larrea C,et al. Crosstalk between hypoxia and er stress response:A key regulator of macrophage polarization[J]. Front Immunol202010:2951. DOI:10.3389/fimmu.2019.02951.
[61]
Kimura FMiyazawa KHamamura K,et al. Suppression of alveolar bone resorption by salubrinal in a mouse model of periodontal disease[J]. Life Sciences2021284:119938. DOI:10.1016/j.lfs.2021.119938.
[62]
Sukprasansap MChanvorachote PTencomnao T. Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells[J]. BMC Complement Med Ther202020(1):46. DOI:10.1186/s12906-020-2819-7.
[63]
Tu HPKuo CYFu MMJ,et al. Cyanidin-3-O-glucoside downregulates ligation-activated endoplasmic reticulum stress and alleviates induced periodontal destruction in rats[J]. Arch Oral Biol2022134:105313. DOI:10.1016/j.archoralbio.2021.105313.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[3] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[6] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[7] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[8] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[9] 许娟, 张党锋. 尼达尼布对肺纤维化小鼠肺功能及内质网应激反应的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 673-675.
[10] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[11] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[12] 桑田, 赵磊, 佟琰, 欧阳清, 陈香美. 急性肾损伤的内质网应激相关基因和通路的生物信息学分析[J]. 中华肾病研究电子杂志, 2024, 13(01): 26-33.
[13] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[14] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要