切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 219 -229. doi: 10.3877/cma.j.issn.1674-1366.2024.04.002

论著

新型三维复合骨修复支架的制备工艺及其生物学性能
杨城1, 李祖儿1, 刘青2, 赵渊3, 徐崇燕3, 苏军2, 张文云2,()   
  1. 1. 中国人民解放军联勤保障部队第九二二医院,衡阳 421000
    2. 中国人民解放军联勤保障部队第九二〇医院,昆明 650000
    3. 昆明医科大学,昆明 650000
  • 收稿日期:2024-03-01 出版日期:2024-08-01
  • 通信作者: 张文云

Preparation process and biological properties of a new three-dimensional composite bone repair scaffold

Cheng Yang1, Zuer Li1, Qing Liu2, Yuan Zhao3, Chongyan Xu3, Jun Su2, Wenyun Zhang2,()   

  1. 1. The 922 Hospital of the PLA Joint Logistic Support Force, Hengyang 421000, China
    2. The 920 Hospital of the PLA Joint Logistic Support Force, Kunming 650000, China
    3. Kunming Medical University, Kunming 650000, China
  • Received:2024-03-01 Published:2024-08-01
  • Corresponding author: Wenyun Zhang
  • Supported by:
    Joint special funds for applied basic research of Yunnan Provincial Department of Science and Technology and Kunming Medical University(202101AY070001-028)
引用本文:

杨城, 李祖儿, 刘青, 赵渊, 徐崇燕, 苏军, 张文云. 新型三维复合骨修复支架的制备工艺及其生物学性能[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 219-229.

Cheng Yang, Zuer Li, Qing Liu, Yuan Zhao, Chongyan Xu, Jun Su, Wenyun Zhang. Preparation process and biological properties of a new three-dimensional composite bone repair scaffold[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(04): 219-229.

目的

探讨3D打印技术制备聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)新型骨修复支架的工艺参数,并研究其对牙周膜干细胞(PDLSC)的生物相容性。

方法

将PLGA与CHA/n-ZnO粉末按4∶1质量比混合,通过生物挤出3D打印技术制备PLGA/CHA/n-ZnO复合骨修复支架,通过X射线衍射仪、扫描电镜(SEM)、电子万能试验机、压汞仪和接触角测量仪对支架样件的相关理化性能进行检测分析,并通过体外细胞黏附实验观察PDLSC在支架表面黏附情况与生长状态。

结果

成功制备出3种不同形态PLGA/CHA/n-ZnO三维复合骨修复支架。X射线衍射仪检测支架可见碳酸钙、羟基磷灰石与氧化锌吸收峰;SEM观察支架表面粗糙,可见不同尺寸孔径结构;电子万能试验机分析计算得出支架压缩强度为(12.31 ± 4.80)MPa,弹性模量为(31.18 ± 12.30)MPa;压汞仪测得支架孔径分布为5 nm ~ 350 μm;静态接触角测量仪测试得出支架接触角为(75.73 ± 5.54)°;体外实验可见PDLSC黏附于支架表面,生长状态良好。

结论

本研究为PLGA/CHA/n-ZnO三维复合骨修复支架负载PDLSC新型组织工程骨的研制奠定了实验基础。

Objective

To explore the process parameters of polylactate-hydroxyacetate copolymer coral hydroxyapatite nano zinc oxide [poly (lactic-co-glycolic acid) /coralline hydroxyapatite/nano zinc oxide, PLGA/CHA/n-ZnO] by 3D printing technology and evaluate its biocompatibility with periodontal ligament stem cells (PDLSCs) .

Methods

PLGA and CHA/n-ZnO powder were mixed at 4∶1 mass ratio. PLGA/CHA/n-ZnO composite bone repair scaffold was prepared by biological extrusion 3D printing technology. Its physicochemical properties were examined by using X-ray diffraction, scanning electron microscopy, electron universal test, mercury press and contact angle test. The adhesion and growth status of PDLSCs on the surface of the scaffold was evaluated in vitro.

Results

Three different forms of PLGA/CHA/n-ZnO 3D composite bone repair scaffolds were successfully prepared. The peaks of calcium carbonate, hydroxyapatite and zinc oxide were detected. The stent had a rough surface and a porous structure with different pore sizes. Its compression strength and elastic modulus were (12.31 ± 4.80) MPa and (31.18 ± 12.30) MPa, respectively. The pore diameter was 5 nm-350 μm. The stent contact angle was (75.73 ± 5.54) °. PDLSCs showed great adhesion and growth onto the surface of the scaffold.

Conclusion

This study laid the experimental foundation for the development of PDLSCs loaded PLGA/CHA/n-ZnO as a new tissue engineering bone substitute.

图1 计算机设计出的3种不同形态3D模型 A:矩形骨块3D模型;B:牙根样3D模型;C:牙拔除后牙槽窝的3D模型;D:通过模拟牙槽窝3D模型内部空间形态反向建立骨缺损模型。
图2 制备出的聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)复合材料样品  图3 三维支架的打印制备
图4 3D打印过程中复合材料出丝不连续、不顺畅现象 A:喷嘴堵塞;B:丝材卷叠。
图5 打印完成的3种形态支架样件 A:矩形骨块支架样件;B:牙根样支架样件;C:牙槽窝模拟骨缺损支架样件。
图6 聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)支架X射线衍射图谱
图7 聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)支架扫描电镜结果 A:可见支架不同尺寸孔结构(低倍放大);B:可见支架呈现颗粒状粗糙表面(高倍放大)。
表1 电子万能试验机测试支架力学性能数据结果
图8 聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)支架静态接触角
图9 聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)支架孔径分布
图10 组织块联合酶消化法培养传代后牙周膜干细胞(PDLSC)镜下形态特点 A:P3;B:P5。
图11 牙周膜干细胞(PDLSC)CD44免疫荧光染色(高倍放大)A:PDLSC阳性表达CD44,胞质红染;B:细胞核经DAPI复染呈蓝色。
图12 牙周膜干细胞(PDLSC)Vimentin免疫荧光染色 A:PDLSC阳性表达Vimentin,胞质绿染;B:细胞核经DAPI复染呈蓝色。
图13 流式细胞仪分析牙周膜干细胞(PDLSC)表面标志物
图14 牙周膜干细胞(PDLSC)成骨诱导分化  图15 牙周膜干细胞(PDLSC)成脂诱导分化(低倍放大)
图16 聚乳酸-羟基乙酸共聚物珊瑚羟基磷灰石纳米氧化锌(PLGA/CHA/n-ZnO)三维复合骨修复支架与牙周膜干细胞(PDLSC)体外共培养3 d后扫描电镜观 A:细胞黏附于支架表面;B:细胞铺展出伪足。
[1]
Liu YGuo LLi X,et al. Challenges and tissue engineering strategies of periodontal-guided tissue regeneration[J]. Tissue Eng Part C Methods202228(8):405-419. DOI:10.1089/ten.TEC.2022.0106.
[2]
Aimaijiang MLiu YZhang Z,et al. LIPUS as a potential strategy for periodontitis treatment:A review of the mechanisms[J]. Front Bioeng Biotechnol202311:1018012. DOI:10.3389/fbioe.2023.1018012.
[3]
de Ry SPPagnamenta MRamseier CA,et al. Five-year results following regenerative periodontal surgery with an enamel matrix derivative in patients with different smoking status[J]. Quintessence Int202253(10):832-838. DOI:10.3290/j.qi.b3418233.
[4]
Liang YLuan XLiu X. Recent advances in periodontal regeneration:A biomaterial perspective[J]. Bioact Mater20205(2):297-308. DOI:10.1016/j.bioactmat.2020.02.012.
[5]
Vaquette CPilipchuk SPBartold PM,et al. Tissue engineered constructs for periodontal regeneration:current status and future perspectives[J]. Adv Healthc Mater20187(21):e1800457. DOI:10.1002/adhm.201800457.
[6]
Pjetursson BEHeimisdottir K. Dental implants—Are they better than natural teeth?[J]. Eur J Oral Sci2018126(Suppl 1):81-87. DOI:10.1111/eos.12543.
[7]
Testori TWeinstein TScutellà F,et al. Implant placement in the esthetic area:Criteria for positioning single and multiple implants[J]. Periodontol 2000201877(1):176-196. DOI:10.1111/prd.12211.
[8]
Tettamanti LAndrisani CBassi MA,et al. Post extractive implant:Evaluation of the critical aspects[J]. Oral Implantol (Rome)201710(2):119-128. DOI:10.11138/orl/2017.10.2.119.
[9]
Hämmerle CHFTarnow D. The etiology of hard- and soft-tissue deficiencies at dental implants:A narrative review[J]. J Periodontol201889(Suppl 1):S291-S303. DOI:10.1002/JPER.16-0810.
[10]
Esposito MGrusovin MGCoulthard P,et al. The efficacy of various bone augmentation procedures for dental implants:A Cochrane systematic review of randomized controlled clinical trials[J]. Int J Oral Maxillofac Implants200621(5):696-710. DOI:10.1016/j.ijom.2006.03.021.
[11]
Misch CM. The future of bone augmentation[J]. Int J Oral Implantol(Berl)202215(2):103-104.
[12]
Cha HSKim JWHwang JH,et al. Frequency of bone graft in implant surgery[J]. Maxillofac Plast Reconstr Surg201638(1):19-28. DOI:10.1186/s40902-016-0064-2.
[13]
Barone AntonioNannmark Ulf.引导骨再生策略与方法[M].张健,王艳颖,韩静,译.沈阳:辽宁科学技术出版社,2021:5-11.
[14]
林野.口腔种植学[M].北京:北京大学医学出版社,2014:79-80.
[15]
唐国柯,文根,刘彦斌,等.骨缺损修复生物材料的研究进展[J].中华骨与关节外科杂志202316(2):185-192. DOI:10.3969/j.issn.2095-9958.2023.02.15.
[16]
Deng RXie YChan U,et al. Biomaterials and biotechnology for periodontal tissue regeneration:Recent advances and perspectives[J]. J Dent Res Dent Clin Dent Prospects202216(1):1-10. DOI:10.34172/joddd.2022.001.
[17]
Bartold PMGronthos SIvanovski S,et al. Tissue engineered periodontal products[J]. J Periodontal Res201651(1):1-15. DOI:10.1111/jre.12275.
[18]
Ding GLiu YWang W,et al. Allogeneic perio-dontal ligament stem cell therapy for periodontitis in swine[J]. Stem Cells201028(10):1829-1838. DOI:10.1002/stem.512.
[19]
Liu OXu JDing G,et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1[J]. Stem Cells201331(7):1371-1382. DOI:10.1002/stem.1387.
[20]
Wei WAn YAn Y,et al. Activation of autophagy in periodontal ligament mesenchymal stem cells promotes angiogenesis in periodontitis[J]. J Periodontol201889(6):718-727. DOI:10.1002/JPER.17-0341.
[21]
Ulmer FLWinkel AKohorst P,et al. Stem cells--prospects in dentistry[J]. Schweiz Monatsschr Zahnmed2010120(10):860-872.
[22]
Daghrery ABottino MC. Advanced biomaterials for periodontal tissue regeneration[J]. Genesis202260(8-9):e23501. DOI:10.1002/dvg.23501.
[23]
Bousnaki MBeketova AKontonasaki E. A review of in vivo and clinical studies applying scaffolds and cell sheet technology for periodontal ligament regeneration[J]. Biomolecules202212(3):435. DOI:10.3390/biom12030435.
[24]
Tsumanuma YIwata TWashio K,et al. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model[J]. Biomaterials201132(25):5819-5825. DOI:10.1016/j.biomaterials.2011.04.071.
[25]
康坤龙,王新涛.生物支架材料促进骨髓间充质干细胞成骨分化的研究热点[J].中国组织工程研究202226(4):597-603.
[26]
Boden SDMartin GJ JrMorone M,et al. The use of coralline hydroxyapatite with bone marrow,autogenous bone graft,or osteoinductive bone protein extract for posterolateral lumbar spine fusion[J]. Spine(Phila Pa 1976)199924(4):320-327. DOI:10.1097/00007632-199902150-00003.
[27]
张富贵,宿玉成,邱立新,等.牙槽骨缺损骨增量手术方案的专家共识[J].口腔疾病防治202230(4):229-236. DOI:10.12016/j.issn.2096-1456.2022.04.001.
[28]
Vallet-Regí MLozano DGonzález B,et al. Biomaterials against bone infection[J]. Adv Healthc Mater20209(13):e2000310. DOI:10.1002/adhm.202000310.
[29]
Ahrari FEslami NRajabi O,et al. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes[J]. Dent Res J(Isfahan)201512(1):44-49. DOI:10.4103/1735-3327.150330.
[30]
Chang JHSu JZhang WY. Process study on surface modification of coral hydroxyapatite[J]. Am J Clin Exp Med20219(5):157-162. DOI:10.11648/J.AJCEM.20210905.15.
[31]
Feng YZhu SMei D,et al. Application of 3D printing technology in bone tissue engineering:A review[J]. Curr Drug Deliv202118(7):847-861. DOI:10.2174/1567201817999201113100322.
[32]
Distefano FPasta SEpasto G. Titanium lattice structures produced via additive manufacturing for a bone scaffold:A review[J]. J Funct Biomater202314(3):125. DOI:10.3390/jfb14030125.
[33]
Gögele CMüller SBelov S,et al. Biodegradable poly(D-L-lactide-co-glycolide)(PLGA)-infiltrated bioactive glass (CAR12N)scaffolds maintain mesenchymal stem cell chondrogenesis for cartilage tissue engineering[J]. Cells202211(9):1577. DOI:10.3390/cells11091577.
[34]
Rocha CVGonçalves Vda Silva MC,et al. PLGA-based composites for various biomedical applications[J]. Int J Mol Sci202223(4):2034. DOI:10.3390/ijms23042034.
[35]
Lai YLi YCao H,et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials2019197:207-219. DOI:10.1016/j.biomaterials.2019.01.013.
[36]
Wei JYan YGao J,et al. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration[J]. Biomater Adv2022133:112618. DOI:10.1016/j.msec.2021.112618.
[37]
Babilotte JMartin BGuduric V,et al. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl2021118:111334. DOI:10.1016/j.msec.2020.111334.
[38]
Hatt LPWirth SRistaniemi A,et al. Micro-porous PLGA/β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes[J]. Regen Biomater202310:rbad084. DOI:10.1093/rb/rbad084.
[39]
Li CSun FTian J,et al. Continuously released Zn2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties[J]. Bioact Mater202224:361-375. DOI:10.1016/j.bioactmat.2022.12.015.
[40]
Baniasadi HKimiaei EPolez RT,et al. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks[J]. Int J Biol Macromol2022209(Pt B):2020-2031. DOI:10.1016/j.ijbiomac.2022.04.183.
[41]
Hu XMan YLi W,et al. 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds[J]. Polymers(Basel)201911(10):1601. DOI:10.3390/polym11101601.
[42]
Smith PTBasu ASaha A,et al. Chemical modification and printability of shear-thinning hydrogel inks for direct-write 3D printing[J]. Polymer201812(125):42-50. DOI:10.1016/j.polymer.2018.01.070.
[43]
Shahzad ALazoglu I. Direct ink writing(DIW)of structural and functional ceramics:Recent achievements and future challenges[J]. Compos Part B:Eng202115(225):109249. DOI:10.1016/j.compositesb.2021.109249.
[44]
Ravichandran DXu WKakarla M,et al. Multiphase direct ink writing(MDIW)for multilayered polymer/nanoparticle composites[J]. Addit Manuf202147:102322. DOI:10.1016/j.addma.2021.102322.
[45]
Prasopthum ACooper MShakesheff KM,et al. Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells[J]. ACS Appl Mater Interfaces201911(21):18896-18906. DOI:10.1021/acsami.9b01472.
[46]
Zou FJiang JLv F,et al. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair[J]. J Nanobiotechnology202018(1):39. DOI:10.1186/s12951-020-00594-6.
[47]
Fu SDu XZhu M,et al. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors[J]. Biomed Mater201914(6):065011. DOI:10.1088/1748-605X/ab4166.
[48]
Luo YChen BZhang X,et al. 3D printed concentrated alginate/GelMA hollow-fibers-packed scaffolds with nano apatite coatings for bone tissue engineering[J]. Int J Biol Macromol2022202:366-374. DOI:10.1016/j.ijbiomac.2022.01.096.
[49]
Rau DAWilliams CBBortner MJ. Rheology and printability:A survey of critical relationships for direct ink write materials design[J]. Prog Mater Sci2023140:101188. DOI:10.1016/j.pmatsci.2023.101188.
[50]
Rau DABortner MJWilliams CB. A rheology roadmap for evaluating the printability of material extrusion inks[J]. Additive Manufacturing202375:103745.
[51]
Suntornnond RTan EYSAn J,et al. A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks[J]. Materials(Basel)20169(9):756. DOI:10.3390/ma9090756.
[52]
Collins MNGuang RYoung K,et al. Scaffold fabrication technologies and structure/function properties in bone tissue engineering[J]. Adv Funct Mater202131(21):2010609. DOI:10.1002/adfm.202010609.
[53]
Qu HFu HHan Z,et al. Biomaterials for bone tissue engineering scaffolds:A review[J]. RSC Adv20199(45):26252-26262. DOI:10.1039/c9ra05214c.
[54]
Kodama JHarumningtyas AAIto T,et al. Amine modification of calcium phosphate by low-pressure plasma for bone regeneration[J]. Sci Rep202111(1):17870. DOI:10.1038/s41598-021-97460-8.
[55]
Yu JZhang WYLi Y,et al. Synthesis,characterization,antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial[J]. Biomed Mater201410(1):015001. DOI:10.1088/1748-6041/10/1/015001.
[56]
Jin JLiu WZhang WY,et al. Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections[J]. J Nanopart Res201416:2658. DOI:10.1007/s11051-014-2658-x.
[57]
刘娟,孟波,赵华,等.人牙周膜细胞不同分离培养方法的比较研究[J].广东牙病防治201119(12):631-634.
[58]
马佳音,胥春,郝轶,等.三种组织块法培养人牙周膜细胞的比较研究[J].组织工程与重建外科杂志20106(3):136-140. DOI:10.3969/j.issn.1673-0364.2010.03.004.
[59]
Subba TAVarma SThomas B,et al. Comparison of cellular and differentiation characteristics of mesenchymal stem cells derived from human gingiva and periodontal ligament[J]. J Int Soc Prev Community Dent202212(2):235-244. DOI:10.4103/jispcd.JISPCD_259_21.
[60]
Couto de Carvalho LATosta Dos Santos SLSacramento LV,et al. Mesenchymal stem cell markers in periodontal tissues and periapical lesions[J]. Acta Histochem2020122(8):151636. DOI:10.1016/j.acthis.2020.151636.
[1] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[4] 杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.
[5] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[6] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[7] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[8] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 陈莉, 何斌, 赵庆辉, 李翀, 汤红明, 刘中民. 干细胞新兴学科人才建设的实践与探索[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 176-180.
[11] 郭煦妍, 罗志嵘, 薛琦, 王林猛, 吉运华, 张波. 3D生物打印在肾脏再生领域的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 181-185.
[12] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
阅读次数
全文


摘要