切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 170 -180. doi: 10.3877/cma.j.issn.1674-1366.2025.03.004

论著

基于基因表达数据库筛选牙周炎与非酒精性脂肪性肝炎的潜在共同关键基因
李嘉怡1, 武楠1,()   
  1. 1. 上海市口腔医院,复旦大学附属口腔医院检验科,上海 200001
  • 收稿日期:2025-03-19 出版日期:2025-06-01
  • 通信作者: 武楠
  • 基金资助:
    国家自然科学基金(81902110)

Identification of shared hub genes between periodontitis and non-alcoholic steatohepatitis based on the gene expression omnibus datasets

Jiayi Li1, Nan Wu1,()   

  1. 1. Department of Clinical Laboratory,Shanghai Stomatological Hospital,Fudan University,Shanghai 200001,China
  • Received:2025-03-19 Published:2025-06-01
  • Corresponding author: Nan Wu
引用本文:

李嘉怡, 武楠. 基于基因表达数据库筛选牙周炎与非酒精性脂肪性肝炎的潜在共同关键基因[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 170-180.

Jiayi Li, Nan Wu. Identification of shared hub genes between periodontitis and non-alcoholic steatohepatitis based on the gene expression omnibus datasets[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2025, 19(03): 170-180.

目的

采用生物信息学方法筛选牙周炎(PD)和非酒精性脂肪性肝炎(NASH)的共同关键基因,探索两种疾病潜在的共同致病机制。

方法

从基因表达数据库(GEO)中获取2008—2016年相关疾病数据集,选择GSE16134和GSE89632分别作为PD和NASH的训练数据集,筛选差异表达基因(DEG)并取交集得到重叠DEG。对重叠DEG 进行基因本体(GO)和京都基因与基因组百科全书(KEGG)富集分析。结合加权基因共表达网络分析(WGCNA),以及最小绝对收缩和选择算子(LASSO)回归分析进一步筛选关键基因。分析关键基因在训练和验证数据集(PD:GSE10334;NASH:GSE33814)中的差异表达水平,并通过受试者工作特征(ROC)曲线评估其诊断价值。

结果

从GSE16134 和GSE89632 中得到36 个重叠DEG,其中包含19 个上调基因和17 个下调基因。GO 和KEGG富集分析表明这些重叠DEG主要与细胞间黏附、细胞因子和趋化因子相关信号通路等有关。将重叠DEG 与WGCNA 获取的重叠模块基因取交集后得到8 个候选关键基因(ANXA6、CD48、GIMAP2、GPR34、HAL、ITGAL、PTPRCAP 和SLC19A2)。其中ANXA6CD48GIMAP2GPR34ITGALPTPRCAP在疾病组中表达显著上调(P<0.05),HALSLC19A2则显著下调(P<0.05)。在此基础上,通过LASSO回归分析进一步筛选出4个候选共同关键基因(ANXA6GIMAP2HALSLC19A2),其中ANXA6GIMAP2SLC19A2在多数据集验证中表现出稳定的表达差异和良好的诊断效能[曲线下面积(AUC)>0.7],最终被确定为PD和NASH的共同关键基因。

结论

本研究利用公共数据集挖掘出了3个PD和NASH的潜在共同关键基因,为PD和NASH共同致病机制研究、治疗策略提供了新的线索和方向。

Objective

To identify shared hub genes between periodontitis(PD)and nonalcoholic steatohepatitis (NASH) using bioinformatics methods,and to explore potential common pathogenic mechanisms of the two diseases.

Methods

Gene expression datasets related to the diseases were obtained from the gene expression omnibus(GEO)database between 2008 and 2016.GSE16134 and GSE89632 were selected as training datasets for PD and NASH,respectively. Differentially expressed genes(DEGs)were identified,and overlapping DEGs were extracted by intersecting the two datasets.Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)enrichment analyses were performed on the overlapping DEGs.Hub genes were further screened through weighted gene co-expression network analysis(WGCNA)and the least absolute shrinkage and selection operator(LASSO)regression analysis. Subsequently,the expression levels of hub genes were validated in independent datasets(PD:GSE10334;NASH:GSE33814),and their diagnostic performance was evaluated using receiver operating characteristic(ROC)curve analysis.

Results

A total of 36 overlapping DEGs were identified from GSE16134 and GSE89632,including 19 upregulated and 17 downregulated genes. GO and KEGG enrichment analysis indicated that these genes were associated with cell adhesion,cytokine and chemokine signaling pathway. By intersecting overlapping DEGs with module genes from WGCNA,eight candidate hub genes were identified:ANXA6,CD48,GIMAP2,GPR34,HAL,ITGAL,PTPRCAP,SLC19A2. Among them,ANXA6,CD48,GIMAP2,GPR34,ITGAL and PTPRCAP were significantly upregulated in disease groups(P<0.05),while HAL and SLC19A2 were significantly downregulated(P<0.05). Further LASSO regression analysis identified four potential shared hub genes(ANXA6,GIMAP2,HAL and SLC19A2). Among these genes,ANXA6,GIMAP2 and SLC19A2 consistently exhibited stable differential expression and considerable diagnostic performance(AUC>0.7)across multiple datasets,and were ultimately identified as shared hub genes between PD and NASH.

Conclusions

This study identified three potential shared hub genes between PD and NASH based on bioinformatics analyses,providing novel insights into their common pathogenic mechanisms and offering potential targets for future therapeutic strategies.

图1 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)差异表达基因(DEG)分析 A:GSE16134 中上调和下调最显著的25 个DEG 的热图;B:GSE89632中上调和下调最显著的25个DEG的热图;C:GSE16134 DEG的火山图;D:GSE89632 DEG的火山图。蓝点代表下调大于1.5倍的基因,灰点代表无显著差异的基因,红点代表上调大于1.5 倍的基因;横虚线为校正后P 值(P-adj)的显著性水平线,其上方的基因为P-adj<0.05的基因。
图2 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)重叠基因的韦恩图 A:PD和NASH差异表达基因(DEG)的韦恩图(共获得36个重叠DEG,其中上调19个、下调17个);B:PD和NASH模块基因的韦恩图(共获得228个重叠模块基因,其中上调82个、下调146个);C:重叠DEG和重叠模块基因的韦恩图交集。
图3 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)重叠差异表达基因(DEG)的功能富集分析 A:基因本体(GO)富集分析生物过程;B:GO富集分析细胞组分;C:GO富集分析分子功能;D:京都基因与基因组百科全书(KEGG)富集分析。气泡大小表示富集基因数量,颜色表示富集显著性,颜色越红表示显著性越高。
图4 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)相关的加权基因共表达网络分析 A:GSE16134无尺度软阈值的筛选结果;B:GSE89634无尺度软阈值的筛选结果;C:GSE16134基因聚类树与模块构建;D:GSE89634基因聚类树与模块构建;E:GSE16134模块基因和临床性状相关性分析热图;F:GSE89634模块基因和临床性状相关性分析热图。E ~F中横坐标代表疾病表型,纵坐标代表对应模块,单元格内数值上方为相关系数r值,下方为P值。单元格颜色呈红色表示正相关,蓝色表示负相关,颜色越深相关性越强。
图5 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)相关的候选关键基因表达水平的箱线图 A:GSE16134 中候选关键基因的表达水平;B:GSE89632 中候选关键基因的表达水平;C:GSE10334 中候选关键基因的表达水平;D:GSE33814 中候选关键基因的表达水平。aP<0.001,bP<0.05。
图6 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)重叠基因最小绝对收缩和选择算子(LASSO)回归分析 A:GSE16134的LASSO回归交叉验证曲线;B:GSE89634的LASSO回归交叉验证曲线;C:GSE16134的LASSO系数路径图;D:GSE89634的LASSO系数路径图;E:LASSO分析的韦恩图交集。
图7 牙周炎(PD)和非酒精性脂肪性肝炎(NASH)候选关键基因受试者工作特征(ROC)曲线 A:GSE16134 中关键基因ROC 曲线;B:GSE89632中关键基因ROC曲线;C:GSE10334中关键基因ROC曲线;D:GSE33814中关键基因ROC曲线。AUC:曲线下面积。
[1]
Hajishengallis G. Periodontitis:From microbial immune subversion to systemic inflammation[J]. Nat Rev Immunol,2015,15(1):30-44.DOI:10.1038/nri3785.
[2]
Ray RR. Periodontitis:An oral disease with severe consequences[J]. Appl Biochem Biotechnol,2023,195(1):17-32. DOI:10.1007/s12010-022-04127-9.
[3]
Han P,Sun D,Yang J.Interaction between periodontitis and liver diseases[J]. Biomed Rep,2016,5(3):267-276. DOI:10.3892/br.2016.718.
[4]
周娟,白帅婷,董鸿智.非侵入性检查诊断非酒精性脂肪性肝病研究进展[J]. 护理学,2023,12(6):1063-1070. DOI:10.12677/NS.2023.126148.
[5]
Sheka AC, Adeyi O, Thompson J, et al. Nonalcoholic steatohepatitis:A review[J]. JAMA,2020,323(12):1175-1183.DOI:10.1001/jama.2020.2298.
[6]
Rinčić G,Gaćina P,Virović Jukić L,et al. Association between periodontitis and liver disease[J]. Acta Clin Croat,2022,60(3):510-518.DOI:10.20471/acc.2021.60.03.22.
[7]
Yamazaki K,Kato T,Tsuboi Y,et al. Oral pathobiont-induced changes in gut microbiota aggravate the pathology of nonalcoholic fatty liver disease in mice[J].Front Immunol,2021,12:766170.DOI:10.3389/fimmu.2021.766170.
[8]
Furusho H,Miyauchi M,Hyogo H,et al. Dental infection of Porphyromonas gingivalis exacerbates high fat diet - induced steatohepatitis in mice[J].J Gastroenterol,2013,48(11):1259-1270.DOI:10.1007/s00535-012-0738-1.
[9]
Nakahara T,Hyogo H,Ono A,et al.Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease[J]. J Gastroenterol,2018,53(2):269-280. DOI:10.1007/s00535-017-1368-4.
[10]
Yoneda M,Naka S,Nakano K,et al. Involvement of a periodontal pathogen,Porphyromonas gingivalis on the pathogenesis of nonalcoholic fatty liver disease[J]. BMC Gastroenterol,2012,12:16.DOI:10.1186/1471-230X-12-16.
[11]
Nagasaki A,Sakamoto S,Arai T,et al. Elimination of Porphyromonas gingivalis inhibits liver fbrosis and inflammation in NASH[J]. J Clin Periodontol,2021,48(10):1367-1378.DOI:10.1111/jcpe.13523.
[12]
Yang J,Pei T,Su G,et al. AnnexinA6:A potential therapeutic target gene for extracellular matrix mineralization[J]. Front Cell Dev Biol,2023,11:1201200.DOI:10.3389/fcell.2023.1201200.
[13]
Krautbauer S,Haberl EM,Eisinger K,et al. Annexin A6 regulates adipocyte lipid storage and adiponectin release[J]. Mol Cell Endocrinol,2017,439:419-430. DOI:10.1016/j.mce.2016.09.033.
[14]
Grewal T,Enrich C,Rentero C,et al. Annexins in adipose tissue:Novel players in obesity[J]. Int J Mol Sci,2019,20(14):3449.DOI:10.3390/ijms20143449.
[15]
Stöhr J,Barbaresko J,Neuenschwander M,et al. Bidirectional association between periodontal disease and diabetes mellitus:A systematic review and Meta-analysis of cohort studies[J]. Sci Rep,2021,11(1):13686.DOI:10.1038/s41598-021-93062-6.
[16]
Wree A,Kahraman A,Gerken G,et al.Obesity affects the liverthe link between adipocytes and hepatocytes[J]. Digestion,2011,83(1-2):124-133.DOI:10.1159/000318741.
[17]
Cairns R,Fischer AW,Blanco-Munoz P,et al. Altered hepatic glucose homeostasis in AnxA6-KO mice fed a high-fat diet[J].PLoS One,2018,13(8):e0201310. DOI:10.1371/journal.pone.0201310.
[18]
郑旭,谢琛,高畅,等.白细胞介素-37 与牙周炎关系的研究进展[J].口腔疾病防治,2021,29(12):859-864.DOI:10.12016/j.issn.2096-1456.2021.12.010.
[19]
Cornely R,Pollock AH,Rentero C,et al. Annexin A6 regulates interleukin-2-mediated T-cell proliferation[J]. Immunol Cell Biol,2016,94(6):543-553.DOI:10.1038/icb.2016.15.
[20]
Liao J,Zhang Z,Yuan Q,et al. The mouse Anxa6/miR-9-5p/Anxa2 axis modulates TGF-β1-induced mouse hepatic stellate cell(mHSC)activation and CCl4 - caused liver fibrosis[J].Toxicol Lett,2022,362:38-49. DOI:10.1016/j.toxlet.2022.04.004.
[21]
Xu X,Li Y,Yang Z,et al.Transient receptor potential vanilloid type-1 regulates periodontal disease damage via the PI3K/AKT signaling pathway[J]. Iran J Basic Med Sci,2022,25(5):635-642.DOI:10.22038/IJBMS.2022.62992.13924.
[22]
覃鸿泉,郑幽,王嫚娜,等.免疫相关GTP结合蛋白2的亚细胞定位分析[J].北京大学学报(医学版),2020,52(2):221-226.DOI:10.19723/j.issn.1671-167X.2020.02.005.
[23]
Dai P,Tang Z,Qi M,et al. Dispersion and utilization of lipid droplets mediates respiratory syncytial virus - induced airway hyperresponsiveness[J].Pediatr Allergy Immunol,2022,33(1):e13651.DOI:10.1111/pai.13651.
[24]
Yao Y,Du Jiang P,Chao BN,et al.GIMAP6 regulates autophagy,immune competence,and inflammation in mice and humans[J].J Exp Med,2022,219(6):e20201405. DOI:10.1084/jem.2020 1405.
[25]
Komatsu M,Saito K,Miyamoto I,et al. Aberrant GIMAP2 expression affects oral squamous cell carcinoma progression by promoting cell cycle and inhibiting apoptosis[J]. Oncol Lett,2022,23(2):49.DOI:10.3892/ol.2021.13167.
[26]
Pourhajibagher M,Gharesi S,Chiniforush N,et al. The effect of indocyanine green antimicrobial photothermal/photodynamic therapy on the expression of Bcl-2 and BAX messenger RNA levels in human gingival fibroblast cells[J]. Folia Med(Plovdiv),2020,62(2):314-323. DOI:10.3897/folmed.62.e48038.
[27]
Lu H,Fan L,Zhang W,et al. The mitochondrial genomeencoded peptide MOTS - c interacts with Bcl - 2 to alleviate nonalcoholic steatohepatitis progression[J]. Cell Rep,2023,43(1):113587.DOI:10.1016/j.celrep.2023.113587.
[28]
Enogieru OJ,Koleske ML,Vora B,et al. The effects of genetic mutations and drugs on the activity of the thiamine transporter,SLC19A2[J]. AAPS J,2021,23(2):35. DOI:10.1208/s12248-021-00562-4.
[29]
Katipoğlu N,Karapinar TH,Demir K,et al. Infantile-onset thiamine responsive megaloblastic anemia syndrome with SLC19A2 mutation:A case report[J]. Arch Argent Pediatr,2017,115(3):e153-e156.DOI:10.5546/aap.2017.eng.e153.
[30]
Marcé-Grau A,Martí-Sánchez L,Baide-Mairena H,et al.Genetic defects of thiamine transport and metabolism:A review of clinical phenotypes,genetics,and functional studies[J]. J Inherit Metab Dis,2019,42(4):581-597.DOI:10.1002/jimd.12125.
[31]
Al-Basrawi R,Al-Mashhadane F. Antioxidant effect of folic acid and its relation to salivary proteins and oral health[J]. Al -Rafidain Dent J,2020,20(1):83-94. DOI:10.33899/rden.2020.164540.
[32]
Kono G,Hendiani I,Komara I. Dietary habit of chronic periodontitis patients based on Balanced Nutrition Guidelines from the Ministry of Health of the Republic of Indonesia[J].Padjadjaran J Dent,2021,33(1):1. DOI:10.24198/pjd.vol33 no1.15404.
[33]
Liang X,Yee SW,Chien HC,et al.Organic cation transporter 1(OCT1)modulates multiple cardiometabolic traits through effects on hepatic thiamine content[J]. PLoS Biol,2018,16(4):e2002907.DOI:10.1371/journal.pbio.2002907.
[34]
Pavlova OS,Tykhomyrov AA,Mejenskaya O. High thiamine dose restores levels of specific astroglial proteins in rat brain astrocytes affected by chronic ethanol consumption[J]. Ukr Biochem J,2019,91(4):41-49.DOI:10.15407/ubj91.04.041.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 朱文婷, 顾鹏, 孙星. 非酒精性脂肪性肝病对乳腺癌发生发展及治疗的影响[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 371-375.
[3] 程呈, 卢帅, 陈蓉, 李新萍, 白睿峰, 崔更力, 陈烁, 殷家伟, 胡建鹏, 汪垚卓, 蒋协远, 陈海翎. 基于基因表达数据库分析非酒精性脂肪性肝病炎症损伤相关核心基因[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 99-106.
[4] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[5] 郭瑞铭, 邱伟, 房付春. 单细胞RNA测序技术的发展及其在牙周炎研究中的应用与展望[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(02): 75-83.
[6] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[7] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[8] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[9] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[10] 马中正, 杨云川, 马翔, 周迟, 丁丁, 霍俊一, 徐楠, 崔培元, 周磊. 胰腺癌双硫死亡相关的lncRNA预后模型的构建及免疫反应研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 368-376.
[11] 赵阳, 袁筑慧, 周林, 寇建涛, 郎韧, 贺强, 马军. 非酒精性脂肪性肝病肝癌和病毒性肝炎肝癌肝切除围手术期疗效和安全性的对比分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 402-407.
[12] 徐涵治, 邱洵, 汪恺, 徐骁. 脂肪变性供肝脱脂策略的研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 18-24.
[13] 江浩, 余宏圣, 杨碧兰, 阿布都克尤木·斯马依, 吴斌, 杨逸冬. 基于列线图模型对慢性乙型肝炎合并肝脏脂肪变性患者并发晚期肝纤维化的临床预测[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(02): 114-120.
[14] 张杨杨, 项楚淇, 朱满生. 肌少性肥胖与非酒精性脂肪性肝病间的关系以及研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 276-282.
[15] 周艳, 赵梦扬, 乔彤, 蔡颖. 人工智能辅助口腔环境管理模式在颈动脉狭窄合并牙周炎患者中的应用研究[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 528-534.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?