切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2025, Vol. 19 ›› Issue (03) : 160 -169. doi: 10.3877/cma.j.issn.1674-1366.2025.03.003

论著

口腔-神经疾病研究中的秀丽隐杆线虫阿尔茨海默病模型转录组特征分析
丁天宇1, 白新娜1, 王雅丽1, 申婷1, 张剑英1,()   
  1. 1. 口腔健康研究湖南省重点实验室,中南大学湘雅口腔医学院,湘雅口腔医院,长沙 410080
  • 收稿日期:2024-12-06 出版日期:2025-06-01
  • 通信作者: 张剑英
  • 基金资助:
    湖南省卫生健康委国家临床重点专科重大科研专项(20230146)

Transcriptomic analysis of Caenorhabditis elegans model of Alzheimer's disease for oral-neural disease research

Tianyu Ding1, Xinna Bai1, Yali Wang1, Ting Shen1, Jianying Zhang1,()   

  1. 1. Hunan Key Laboratory of Oral Health Research,Central South University,Xiangya School of Stomatology,Xiangya Stomatological Hospital,Changsha 410080,China
  • Received:2024-12-06 Published:2025-06-01
  • Corresponding author: Jianying Zhang
引用本文:

丁天宇, 白新娜, 王雅丽, 申婷, 张剑英. 口腔-神经疾病研究中的秀丽隐杆线虫阿尔茨海默病模型转录组特征分析[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 160-169.

Tianyu Ding, Xinna Bai, Yali Wang, Ting Shen, Jianying Zhang. Transcriptomic analysis of Caenorhabditis elegans model of Alzheimer's disease for oral-neural disease research[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2025, 19(03): 160-169.

目的

利用秀丽隐杆线虫(Caenorhabditis elegans)阿尔茨海默病(AD)模型,通过转录组测序分析探究其早期分子病理机制,为口腔-神经疾病研究提供实验平台。

方法

采用Illumina HiSeq平台对野生型N2和泛神经元表达人源Aβ1-42的AD模型(CL2355)线虫进行转录组测序。通过差异表达分析、基因本体(GO)功能富集分析、京都基因与基因组百科全书(KEGG)通路分析和基因集富集分析(GSEA),系统研究基因表达谱的改变。

结果

与野生型相比,AD模型中鉴定出1 899个上调基因和2 018个下调基因。GO分析显示,上调基因显著富集于神经突起导向和细胞分化等过程,下调基因主要涉及mRNA剪接和DNA修复。KEGG分析发现,药物代谢和异物代谢通路显著上调,而RNA监控和内吞作用通路下调。GSEA 分析揭示,细胞凋亡通路显著下调(经归一化的富集分数NES=-1.775,P=0.008 1),其关键基因ced-9ced-3等表达降低。

结论

本研究通过转录组分析揭示了AD线虫模型中基因表达的系统性变化,为探索口腔感染因素在AD发病中的作用提供了理想的实验模型。

Objective

To investigate the molecular pathological mechanisms of Alzheimer's disease(AD)through transcriptome analysis using Caenorhabditis elegans as a model organism,aiming to provide an in vivo experimental platform for oral-neural disease research.

Methods

Transcriptome sequencing was performed on wild-type N2 and AD model worms(CL2355)expressing pan-neuronal human Aβ1-42 using Illumina HiSeq platform.Differential expression analysis,gene ontology(GO)enrichment analysis,Kyoto encyclopedia of genes and genomes(KEGG)pathway analysis,and gene set enrich analysis(GSEA)were conducted to systematically detect changes in gene expression.

Results

Compared to wild-type,1 899 upregulated and 2 018 downregulated genes were identified in the AD model. GO analysis revealed significant enrichment of upregulated genes in neurite guidance and cell differentiation,while downregulated genes were enriched in mRNA splicing and DNA repair. KEGG analysis showed significant upregulation of drug and xenobiotic metabolism pathways,and downregulation of RNA surveillance and endocytosis pathways.GSEA revealed significant downregulation of the apoptosis pathway[normalized enrichment score(NES)=-1.775,P = 0.008 1]with decreased expression of key genes including ced-9 and ced-3.

Conclusions

This study revealed systematic changes in gene expression in the C.elegans AD model,providing an ideal experimental model for investigating the role of oral infection factors in AD pathogenesis.

图1 野生型与阿尔茨海默病(AD)模型秀丽隐杆线虫(C.elegans)的转录组分析 A:MA图显示差异表达基因(DEG)的分布,红点表示上调基因(1 899个基因),蓝点表示下调基因(2 018个基因),灰点表示无显著变化的基因(筛选标准:倍数变化>1.5且P-adj<0.05);B:样本间基因表达水平的组内相关性分析,每个点代表1个基因,其x轴和y轴坐标分别对应实验组和对照组中经过转换后的表达水平,点聚集在对角线附近表明组间相关性较高,而偏离对角线的点代表DEG;C:DEG的层次聚类热图,a1 ~a5:野生型样本,b1 ~b5:AD模型样本,红色表示高表达,蓝色表示低表达。
图2 差异表达基因(DEG)的基因本体(GO)功能分类 柱状图显示DEG在BP、CC和MF 3个GO维度的分布;深色和浅色分别代表上调和下调基因;其中BP主要涉及细胞过程和代谢过程,CC主要涉及细胞解剖实体和细胞内结构,MF主要涉及结合和催化活性。
图3 差异表达基因(DEG)的生物过程(BP)富集分析 A:上调基因富集的前20个BP;B:下调基因富集的前20个BP。气泡大小表示基因数量,颜色深浅表示富集显著性。
图4 差异表达基因(DEG)的京都基因与基因组百科全书(KEGG)通路分类 柱状图显示DEG在细胞过程、环境信息处理、遗传信息处理、代谢和生物系统5大类KEGG通路中的分布。数字表示注释到相应通路的基因数量、括号内数字表示占总DEG百分比。
图5 差异表达基因(DEG)的京都基因与基因组百科全书(KEGG)通路富集分析 A:上调基因富集的前20个KEGG通路;B:下调基因富集的前20个KEGG通路。柱长表示基因数量,颜色深浅表示富集显著性。
图6 基因集富集分析(GSEA)及凋亡通路关键基因的表达 A:GSEA 显示阿尔茨海默病(AD)模型中多物种共有的细胞凋亡通路的显著下调;B:蛋白-蛋白相互作用(PPI)网络分析凋亡通路中的关键基因(P=5.81e-14);C:关键基因表达水平的箱线图,细胞凋亡通路中5个关键基因(T07C4.8/ced-9、C48D1.2/ced-3、T27F2.3/bir-1、C50B8.2/bir-2Y48E1B.13/csp-1)在野生型和AD模型秀丽隐杆线虫(C.elegans)中的表达水平(FPKM为每百万个转录本千碱基的片段数);线条表示中位数,箱体表示四分位距,触须表示最大和最小值;aP<0.05,bP<0.001,每组n=5生物学重复。
[1]
GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050:An analysis for the Global Burden of Disease Study 2019[J]. Lancet Public Health,2022,7(2):e105-e125. DOI:10.1016/S2468-2667(21)00249-8.
[2]
Guzman-Martinez L,Maccioni RB,Farías GA,et al.Biomarkers for Alzheimer's disease[J]. Curr Alzheimer Res,2019,16(6):518-528.DOI:10.2174/1567205016666190517121140.
[3]
王刚,齐金蕾,刘馨雅,等.中国阿尔茨海默病报告2024[J].诊断学理论与实践,2024,23(3):219-256.DOI:10.16150/j.1671-2870.2024.03.001.
[4]
Blennow K,de Leon MJ,Zetterberg H. Alzheimer's disease[J].Lancet,2006,368(9533):387-403. DOI:10.1016/S0140-6736(06)69113-7.
[5]
Zhang YW,Thompson R,Zhang H,et al. APP processing in Alzheimer's disease[J]. Mol Brain,2011,4:3. DOI:10.1186/1756-6606-4-3.
[6]
Pichet Binette A,Gaiteri C,Wennström M,et al. Proteomic changes in Alzheimer's disease associated with progressive Aβ plaque and tau tangle pathologies[J]. Nat Neurosci,2024,27(10):1880-1891.DOI:10.1038/s41593-024-01737-w.
[7]
Govindpani K,Turner C,Waldvogel HJ,et al. Impaired expression of GABA signaling components in the Alzheimer's disease middle temporal gyrus[J]. Int J Mol Sci,2020,21(22):8704.DOI:10.3390/ijms21228704.
[8]
Apostolakou AE,Sula XK,Nastou KC,et al. Exploring the conservation of Alzheimer-related pathways between H. sapiens and C.elegans:A network alignment approach[J]. Sci Rep,2021,11(1):4572.DOI:10.1038/s41598-021-83892-9.
[9]
Wu Y,Wu Z,Butko P,et al. Amyloid - beta - induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans[J]. J Neurosci,2006,26(50):13102-13113. DOI:10.1523/JNEUROSCI.3448-06.2006.
[10]
Dosanjh LE,Brown MK,Rao G,et al. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta[J].J Alzheimers Dis,2010,19(2):681-690.DOI:10.3233/JAD-2010-1267.
[11]
Laranjeiro R,Harinath G,Hewitt JE,et al. Swim exercise in Caenorhabditis elegans extends neuromuscular and gut healthspan,enhances learning ability,and protects against neurodegeneration[J]. Proc Natl Acad Sci U S A,2019,116(47):23829-23839.DOI:10.1073/pnas.1909210116.
[12]
Yi J,Wang HL,Lu G,et al.Spautin-1 promotes PINK1-PRKNdependent mitophagy and improves associative learning capability in an alzheimer disease animal model[J]. Autophagy,2024,20(12):2655-2676. DOI:10.1080/15548627.2024.238 3145.
[13]
Beydoun MA,Beydoun HA,Hedges DW,et al. Infection burden,periodontal pathogens,and their interactive association with incident all-cause and Alzheimer's disease dementia in a large national survey[J].Alzheimers Dement,2024,20(9):6468-6485.DOI:10.1002/alz.14141.
[14]
李语晨,刘媛,陈峰,等.口腔菌群与阿尔茨海默症的关系[J].四川大学学报(医学版),2022,53(2):194-200. DOI:10.12182/20220360304.
[15]
Pertea M,Pertea GM,Antonescu CM,et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol,2015,33(3):290-295. DOI:10.1038/nbt.3122.
[16]
Love MI,Huber W,Anders S. Moderated estimation of fold change and dispersion for RNA - seq data with DESeq2[J].Genome Biol,2014,15(12):550. DOI:10.1186/s13059-014-0550-8.
[17]
Ashburner M,Ball CA,Blake JA,et al.Gene ontology:Tool for the unification of biology.The Gene Ontology Consortium[J].Nat Genet,2000,25(1):25-29.DOI:10.1038/75556.
[18]
Kanehisa M,Goto S,Kawashima S,et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Res,2004,32(Database issue):D277-D280.DOI:10.1093/nar/gkh063.
[19]
Reimand J,Isserlin R,Voisin V,et al. Pathway enrichment analysis and visualization of omics data using g:Profiler,GSEA,Cytoscape and EnrichmentMap[J].Nat Protoc,2019,14(2):482-517.DOI:10.1038/s41596-018-0103-9.
[20]
李鑫玉,李子航,邹志远,等.秀丽隐杆线虫模型在阿尔茨海默病研究中的应用[J]. 生物资源,2023,45(2):147-152. DOI:10.14188/j.ajsh.2023.02.006.
[21]
Link CD. Invertebrate models of Alzheimer's disease[J]. Genes Brain Behav,2005,4(3):147-156. DOI:10.1111/j.1601-183X.2004.00105.x.
[22]
Chou SC,Aggarwal A,Dawson VL,et al. Recent advances in preventing neurodegenerative diseases[J]. Fac Rev,2021,10:81.DOI:10.12703/r/10-81.
[23]
Narvaes RF,Furini CRG. Role of Wnt signaling in synaptic plasticity and memory[J]. Neurobiol Learn Mem,2022,187:107558.DOI:10.1016/j.nlm.2021.107558.
[24]
Stephano F,Nolte S,Hoffmann J,et al. Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson's disease model[J].Sci Rep,2018,8(1):2372.DOI:10.1038/s41598-018-20836-w.
[25]
Hiew LF,Poon CH,You HZ,et al. TGF-β/Smad signalling in neurogenesis:Implications for neuropsychiatric diseases[J].Cells,2021,10(6):1382.DOI:10.3390/cells10061382.
[26]
Heupel K,Sargsyan V,Plomp JJ,et al. Loss of transforming growth factor - beta 2 leads to impairment of central synapse function[J].Neural Dev,2008,3:25.DOI:10.1186/1749-8104-3-25.
[27]
Cai Shi D,Long C,Vardeman E,et al. Potential anti-Alzheimer properties of mogrosides in Vitamin B12-deficient Caenorhabditis elegans[J]. Molecules,2023,28(4):1826. DOI:10.3390/molecules28041826.
[28]
Canter RG,Penney J,Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease[J]. Nature,2016,539(7628):187-196.DOI:10.1038/nature20412.
[29]
Mattson MP. Apoptotic and anti - apoptotic synaptic signaling mechanisms[J]. Brain Pathol,2000,10(2):300-312. DOI:10.1111/j.1750-3639.2000.tb00264.x.
[30]
Kaletta T,Hengartner MO. Finding function in novel targets:C.elegans as a model organism[J].Nat Rev Drug Discov,2006,5(5):387-398.DOI:10.1038/nrd2031.
[31]
白雪冰,周陆军,林文珍,等.牙周病与神经系统疾病关系的研究进展[J]. 中华口腔医学杂志,2022,57(5):529-534. DOI:10.3760/cma.j.cn112144-20220312-00103.
[32]
Li X,Kiprowska M,Kansara T,et al. Neuroinflammation:A distal consequence of periodontitis[J]. J Dent Res,2022,101(12):1441-1449.DOI:10.1177/00220345221102084.
[33]
Verma A,Azhar G,Zhang X,et al. P.gingivalis-LPS induces mitochondrial dysfunction mediated by neuroinflammation through oxidative stress[J]. Int J Mol Sci,2023,24(2):950.DOI:10.3390/ijms24020950.
[34]
刘忠斌,龙伟,黄嘉玲,等.牙龈卟啉单胞菌外膜囊泡与阿尔茨海默病的相关性研究进展[J]. 微生物学通报,2023,50(8):3647-3658.DOI:10.13344/j.microbiol.china.221087.
[35]
Ayuda-Durán B,Garzón-García L,González-Manzano S,et al.Insights into the neuroprotective potential of epicatechin:Effects against Aβ - induced toxicity in Caenorhabditis elegans[J].Antioxidants(Basel),2024,13(1):79. DOI:10.3390/antiox 13010079.
[36]
Wang C,Zheng C. Using Caenorhabditis elegans to model therapeutic interventions of neurodegenerative diseases targeting microbe-host interactions[J]. Front Pharmacol,2022,13:875349.DOI:10.3389/fphar.2022.875349.
[37]
Dominy SS,Lynch C,Ermini F,et al. Porphyromonas gingivalis in Alzheimer's disease brains:Evidence for disease causation and treatment with small-molecule inhibitors[J].Sci Adv,2019,5(1):eaau3333.DOI:10.1126/sciadv.aau3333.
[38]
Liu XX,Jiao B,Liao XX,et al. Analysis of salivary microbiome in patients with Alzheimer's disease[J].J Alzheimers Dis,2019,72(2):633-640.DOI:10.3233/JAD-190587.
[1] 林桦, 秦超, 骆宁, 刘宏伟, 于泳浩. 烧伤大鼠肝组织关键基因的筛选[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(06): 448-452.
[2] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[3] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[4] 李苒, 姜宇航, 陈泽浩, 何家恺, 闫珊珊, 鄢锦荣, 贾宝辉. 电针治疗阿尔茨海默病患者的先导性随机对照试验[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 218-224.
[5] 杨森, 阙玉梅, 丁莉, 王艺瑾, 侯庆宇. Hcy和AD7c-NTP在阿尔茨海默病诊断中的临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 208-212.
[6] 张萌, 喻中华. 阿尔茨海默病患者血清脂联素、Lp-PLA2、IL-17的表达及与认知功能的相关性分析[J/OL]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 358-363.
[7] 王颖, 杨焱焱, 牛雯晓, 李梦凡, 张金彪. 非体位性阻塞性睡眠呼吸暂停与认知功能障碍的相关性研究[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 108-116.
[8] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[9] 袁紫嫣, 姚春玲, 石江伟. 基于大脑类淋巴系统清除机制探讨针刺治疗阿尔茨海默病的研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(01): 28-33.
[10] 李悦, 豆小文, 纪翔, 李瑞, 刘婷, 莫红梅. 基于质谱法的胆汁酸和微量元素联合分析作为阿尔茨海默病预测标志物的应用[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(01): 1-10.
[11] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[12] 陆静, 钟为慧, 赵杰, 曾玲晖. 髓系细胞触发受体2在β淀粉样蛋白病理致阿尔茨海默病中的作用机制[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 51-56.
[13] 赵晓晓, 邱嘉婷, 张懿姝, 张蓉, 张棚, 刘晓蕾. 丁苯酞在各类型认知障碍治疗中的应用研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 19-26.
[14] 曾德阳, 董贺千禧, 陶凉, 肖红艳, 曾燕, 鄢华. 中年心血管危险因素增加阿尔茨海默病相关痴呆的流行病学和机制研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(01): 6-13.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?