[1] |
Sampaio-Maia B,Caldas IM,Pereira ML,et al. The Oral Microbiome in Health and Its Implication in Oral and Systemic Diseases[J]. Adv Appl Microbiol,2016,97:171-210. DOI: 10.1016/bs.aambs.2016.08.002.
|
[2] |
Koo H,Yamada KM. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments[J]. Curr Opin Cell Biol,2016,42:102-112. DOI: 10.1016/j.ceb.2016.05.005.
|
[3] |
Xiao J,Klein MI,Falsetta ML,et al. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm[J]. PLoS Pathog,2012,8(4):e1002623. DOI: 10.1371/journal.ppat.1002623.
|
[4] |
Xiao J,Hara AT,Kim D,et al. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human en-amel surface[J]. Int J Oral Sci,2017,9(2):74-79. DOI: 10.1038/ijos.2017.8.
|
[5] |
Vroom JM,De Grauw KJ,Gerritsen HC,et al. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy[J]. Appl Environ Microbiol,1999,65(8):3502-3511. DOI: 10.1089/oli.1.1999.9.359.
|
[6] |
Hwang G,Liu Y,Kim D,et al. Simultaneous spatiotemporal mapping of in situ pH and bacterial activitywithin an intact 3D microcolony structure[J]. Sci Rep,2016,6:32841. DOI: 10.1038/srep32841.
|
[7] |
Koo H,Falsetta ML,Klein MI. The exopolysaccharide matrix:a virulence determinant of cariogenic biofilm[J]. J Dent Res,2013,92(12):1065-1073. DOI: 10.1177/0022034513504218.
|
[8] |
Schlafer S,Baelum V,Dige I. Improved pH-ratiometry for the three-dimensional mapping of pH microenvironments in biofilms under flow condition[J]. J Microbiol Methods,2018,152:194-200. DOI: 10.1016/j.mimet.2018.08.007.
|
[9] |
Chida R,Igarashi K,Kamiyama K,et al. Characterization ofhuman dental plaque formed on hydrogen-ion-sensitive field-effect transistor electrodes[J]. J Dent Res,1986,65(3):448-451. DOI: 10.1177/00220345860650031501.
|
[10] |
Takahashi N,Nyvad B. Caries ecology revisited:microbial dynamics and the caries process[J]. Caries Res,2008,42(6):409-418. DOI: 10.1159/000159604.
|
[11] |
Takeshita T,Yasui M,Shibata Y,et al. Dental plaque development on a hydroxyapatite disk in youngadults observed by using a barcoded pyrosequencing approach[J]. Sci Rep,2015,5:8136. DOI: 10.1038/srep08136.
|
[12] |
Franklin S,Masih S,Thomas AM. Effect on oral pH changes and taste perception in 10-14-year-old children,after calcium fortification of a fruit juice[J]. Eur Arch Paediatr Den,2015,16(6):483-489. DOI: 10.1007/s40368-015-0198-4.
|
[13] |
Fatemeh M,Marjan S,Homa S,et al. CPP-ACP:Effect on Dental Plaque Acidity after Water Rinsing Following Topical Fluoride Therapy[J]. J Clin Pediatr Dent,2017,41(1):22-26. DOI: 10.17796/1053-4628-41.1.22.
|
[14] |
|
[15] |
Joshi VS,Sheet PS,Cullin N,et al. Real-time metabolic interactions between two bacterial species using a carbon-based pH microsensor as a scanning electrochemical microscopy rrobe[J]. Anal Chem,2017,89(20):11044-11052. DOI: 10.1021/acs.analchem.7b03050.
|
[16] |
Kalhan TA,Lin YT,Kalhan AC,et al. Dental plaque pH in predicting caries relapse after general anaesthesia-an exploratory study[J]. Int Dent J,2019,69(6):419-427. DOI: 10.1111/idj.12508.
|
[17] |
|
[18] |
Newman P,MacFadyen EE,Gillespie FC,et al. An in-dwelling electrode for in-vivo measurement of the pH of dental plaque in man[J]. Arch Oral Biol,1979,24(7):501-507. DOI: 10.1016/0003-9969(79)90128-6.
|
[19] |
Liu Y,Ren Z,Hwang G,et al. Therapeutic Strategies Targeting Cariogenic Biofilm Microenvironment[J]. Adv Dent Res,2018,29(1):86-92. DOI: 10.1177/0022034517736497.
|
[20] |
Carlén A,Hassan H,Lingström P. The 'strip method’:a simple method for plaque pH assessment[J]. Caries Res,2010,44(4):341-344. DOI: 10.1159/000315273.
|
[21] |
|
[22] |
|
[23] |
Schmitta FJ,Thaab B,Junghansa C,et al. eGFP-pHsens as a highly sensitive fluorophore for cellular pH determination by fluorescence lifetime imaging microscopy(FLIM)[J]. Biochim Biophys Acta,2014,1837(9):1581-1593. DOI: 10.1016/j.bbabio.2014.04.003.
|
[24] |
|
[25] |
Klein MI,Duarte S,Xiao J,et al. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development[J]. Appl Environ Microbiol,2009,75(3):837-841. DOI: 10.1128/AEM.01299-08.
|
[26] |
DePedro HM,Urayama P. Using LysoSensor Yellow/Blue DND-160 to sense acidic pH under high hydrostatic pressures[J]. Anal Biochem,2009,384(2):359-361. DOI: 10.1016/j.ab.2008.10.007.
|
[27] |
Lawrence JR,Swerhone GDW,Kuhlicke U,et al. In situ evidence for metabolic and chemical microdomains in the structured polymer matrix of bacterial microcolonies[J]. FEMS Microbiol Ecol,2016,92(11):fiw38. DOI: 10.1093/femsec/fiw183.
|
[28] |
Burns A,Ow H,Wiesner U. Fluorescent core-shell silica nanoparticles:towards "Lab on a Particle" architectures for nanobiotechnology[J]. Chem Soc Rev,2006,35(11):1028-1042. DOI: 10.1039/B600562b.
|
[29] |
Schlafer S,Garcia JE,Greve M,et al. Ratiometric imaging of extracellular pH in bacterial biofilms with C-SNARF-4[J]. Appl Environ Microbiol,2015,81(4):1267-1273. DOI: 10.1128/AEM.02831-14.
|
[30] |
Ru F,Du P,Lu X. Efficient ratiometric fluorescence probe utilizing silicon particles/gold nanoclusters nanohybrid for "on-off-on" bifunctional detection and cellular imaging of mercury(Ⅱ)ions and cysteine[J]. Anal Chim Acta,2020,1105:139-146. DOI: 10.1016/j.aca.2020.01.020.
|
[31] |
Ryu J,Kang U,Kim J,et al. Real-time visualization of two-photon fluorescence lifetime imaging microscopy using a wavelength-tunable femtosecond pulsed laser[J]. Biomed Opt Express,2018,9(7):3449-3463. DOI: 10.1364/BOE.9.003449.
|