切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 391 -396. doi: 10.3877/cma.j.issn.1674-1366.2024.06.008

综述

基于口腔微生态的龋病防治研究进展
王阅1, 杨园梦1, 何德亿1, 孟雯1, 陈昕煜1, 李飞1, 卢展民2, 陆海霞1,()   
  1. 1.上海交通大学医学院附属第九人民医院口腔预防科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海 200011
    2.香港大学牙医学院牙科公共卫生,中国香港特别行政区
  • 收稿日期:2024-06-27 出版日期:2024-12-01
  • 通信作者: 陆海霞
  • 基金资助:
    上海市科委港澳台科技合作项目(22410760200)上海市口腔医学重点实验室开放课题(2022SKLS-KFKT010)上海交通大学医工(理)交叉基金(YG2021QN76)

Research progress on caries prevention and treatment based on oral microecology

Yue Wang1, Yuanmeng Yang1, Teck-Ek Ho1, Wen Meng1, Xinyu Chen1, Fei Li1, Zhanmin Lu2, Haixia Lu1,()   

  1. 1.Department of Preventive Dentistry,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine;College of Stomatology,Shanghai Jiao Tong University;National Center for Stomatology;National Clinical Research Center for Oral Diseases;Shanghai Key Laboratory of Stomatology;Shanghai Research Institute of Stomatology,Shanghai 200011,China
    2.Dental Public Health,Faculty of Dentistry,The University of Hong Kong,Hong Kong,SAR,China
  • Received:2024-06-27 Published:2024-12-01
  • Corresponding author: Haixia Lu
引用本文:

王阅, 杨园梦, 何德亿, 孟雯, 陈昕煜, 李飞, 卢展民, 陆海霞. 基于口腔微生态的龋病防治研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 391-396.

Yue Wang, Yuanmeng Yang, Teck-Ek Ho, Wen Meng, Xinyu Chen, Fei Li, Zhanmin Lu, Haixia Lu. Research progress on caries prevention and treatment based on oral microecology[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(06): 391-396.

广义的口腔微生物组是生活在口腔中的微生物构成的生态群落与宿主之间的动态相互作用的集合,这些微生物形成了复杂的、与人类宿主共生的生态系统,这种相对稳定的生态系统也被称为口腔微生态。“生态菌斑假说”是目前被广泛接受的龋病病因学假说之一,其认为在健康状态下口腔微生态保持平衡,当口腔环境发生改变时生态平衡被打破,推动口腔内共生微生物群落向致病性生物膜群落转变,引起微生态失调,最终导致龋病的发生。根据“生态菌斑假说”观点,维护或恢复口腔微生态平衡是当前防治龋病的重要目标。益生元、抗菌肽、纳米颗粒、天然物质、益生菌和噬菌体等新兴生物材料与技术因其独特的优势成为防龋领域的研究热点,在龋病防治领域具有巨大潜力。本文从调控口腔微生态平衡角度综述当前防龋生物材料和技术在龋病防治中的研究及其进展,以期为未来的龋病防治药物研发提供理论基础。

The oralome is the collection of dynamic interactions between the ecological communities of oral microorganisms living in the oral cavity and their hosts,and these microorganisms make up the complex ecosystem which is symbiotic with the human host, also known as oral microecology. The "ecological plaque hypothesis" is one of the most widely accepted hypotheses on the etiology of caries,which suggests that the microecology in the oral cavity maintains a healthy state. The oral environment changed and disturbed the normal ecological balance which pushes the symbiotic microbial community transform into a pathogenicbiofilm community, causing microecology dysbiosis and ultimately leading to the occurrence of dental caries. Thus,maintaining or restoring oral microecological balance is a significant goal in the prevention and treatment of dental caries.Emerging biomaterials and technologies such as prebiotics,antimicrobial peptides, nanoparticles, natural substances,probiotics and phages have become the hotspots in the field of caries prevention because of their unique advantages and great potential. In this article,we review above anti - caries biomaterials in dental caries prevention from the perspective of regulating oral microecological balance,providing a theoretical basis for the future research.

[1]
Radaic A,Kapila YL. The oralome and its dysbiosis:New insights into oral microbiome-host interactions[J]. Comput Struct Biotechnol J,2021,19:1335-1360. DOI:10.1016/j.csbj.2021.02.010.
[2]
Kreth J,Merritt J,Qi F. Bacterial and host interactions of oral streptococci[J].DNA Cell Biol,2009,28(8):397-403.DOI:10.1089/dna.2009.0868.
[3]
Mosaddad SA,Tahmasebi E,Yazdanian A,et al.Oral microbial biofilms:An update[J]. Eur J Clin Microbiol Infect Dis,2019,38(11):2005-2019.DOI:10.1007/s10096-019-03641-9.
[4]
Petersen C,Round JL. Defining dysbiosis and its influence on host immunity and disease[J]. Cell Microbiol,2014,16(7):1024-1033.DOI:10.1111/cmi.12308.
[5]
Hajishengallis G,Lamont RJ,Koo H. Oral polymicrobial communities:Assembly,function,and impact on diseases[J].Cell Host Microbe,2023,31(4):528-538.DOI:10.1016/j.chom.2023.02.009.
[6]
Pleszczyńska M,Wiater A,Janczarek M,et al.(1→3)-α-Dglucan hydrolases in dental biofilm prevention and control:A review[J]. Int J Biol Macromol,2015,79:761-778. DOI:10.1016/j.ijbiomac.2015.05.052.
[7]
Wade WG. Resilience of the oral microbiome[J]. Periodontol 2000,2021,86(1):113-122.DOI:10.1111/prd.12365.
[8]
Baliga S,Muglikar S,Kale R. Salivary pH:A diagnostic biomarker[J]. J Indian Soc Periodontol,2013,17(4):461-465.DOI:10.4103/0972-124x.118317.
[9]
Xu Y,You Y,Yi L,et al. Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration[J]. Bioact Mater,2023,20:418-433. DOI:10.1016/j.bioactmat.2022.06.010.
[10]
Lamont RJ,Koo H,Hajishengallis G. The oral microbiota:Dynamic communities and host interactions[J]. Nat Rev Microbiol,2018,16(12):745-759. DOI:10.1038/s41579-018-0089-x.
[11]
Wang X,Li J,Zhang S,et al.pH-activated antibiofilm strategies for controlling dental caries[J]. Front Cell Infect Microbiol,2023,13:1130506.DOI:10.3389/fcimb.2023.1130506.
[12]
Kumar S,Tadakamadla J,Johnson NW. Effect of toothbrushing frequency on incidence and increment of dental caries:A systematic review and meta-analysis[J]. J Dent Res,2016,95(11):1230-1236.DOI:10.1177/0022034516655315.
[13]
Waldron C,Nunn J,Mac Giolla Phadraig C,et al. Oral hygiene interventions for people with intellectual disabilities [J].Cochrane Database Syst Rev,2019,5(5):Cd012628. DOI:10.1002/14651858.CD012628.pub2.
[14]
Yaacob M,Worthington HV,Deacon SA,et al. Powered versus manual toothbrushing for oral health[J]. Cochrane Database Syst Rev,2014,6:Cd002281. DOI:10.1002/14651858.CD002281.pub3.
[15]
Worthington HV,MacDonald L,Poklepovic Pericic T,et al.Home use of interdental cleaning devices,in addition to toothbrushing, for preventing and controlling periodontal diseases and dental caries[J]. Cochrane Database Syst Rev,2019,4(4):Cd012018.DOI:10.1002/14651858.CD012018.pub2.
[16]
Hujoel PP,Hujoel MLA,Kotsakis GA.Personal oral hygiene and dental caries:A systematic review of randomised controlled trials[J]. Gerodontology,2018,35(4):282-289. DOI:10.1111/ger.12331.
[17]
Guo A,Wide U,Arvidsson L,et al. Dietary intake and meal patterns among young adults with high caries activity:A crosssectional study[J]. BMC Oral Health,2022,22(1):190. DOI:10.1186/s12903-022-02227-w.
[18]
Bernabé E,Vehkalahti MM,Sheiham A,et al. The shape of the dose-response relationship between sugars and caries in adults[J]. J Dent Res,2016,95(2):167-172. DOI:10.1177/002203 4515616572.
[19]
Moores CJ,Kelly SAM,Moynihan PJ. Systematic review of the effect on caries of sugars intake:Ten-year update[J]. J Dent Res,2022,101(9):1034-1045. DOI:10.1177/0022034522108 2918.
[20]
van Meijeren-van Lunteren AW,Voortman T,Wolvius EB,et al. Adherence to dietary guidelines and dental caries among children:A longitudinal cohort study[J]. Eur J Public Health,2023,33(4):653-658.DOI:10.1093/eurpub/ckad097.
[21]
Liao Y,Brandt BW,Li J,et al. Fluoride resistance in Streptococcus mutans:A mini review[J].J Oral Microbiol,2017,9(1):1344509.DOI:10.1080/20002297.2017.1344509.
[22]
Manchanda S,Sardana D,Liu P,et al. Topical fluoride to prevent early childhood caries:Systematic review with network meta-analysis[J]. J Dent,2022,116:103885. DOI:10.1016/j.jdent.2021.103885.
[23]
Zhang J,Sardana D,Li KY,et al. Topical fluoride to prevent root caries:Systematic review with network meta-analysis[J]. J Dent Res,2020,99(5):506-513. DOI:10.1177/0022034520 906384.
[24]
Luo SC,Wei SM,Luo XT,et al. How probiotics,prebiotics,synbiotics,and postbiotics prevent dental caries:An oral microbiota perspective[J]. NPJ Biofilms Microbiomes,2024,10(1):14.DOI:10.1038/s41522-024-00488-7.
[25]
Mayumi S,Kuboniwa M,Sakanaka A,et al. Potential of prebiotic D-tagatose for prevention of oral disease[J]. Front Cell Infect Microbiol,2021,11:767944. DOI:10.3389/fcimb.2021.767944.
[26]
Nagamine Y,Hasibul K,Ogawa T,et al. D-tagatose effectively reduces the number of streptococcus mutans and oral bacteria in healthy adult subjects: A chewing gum pilot study and randomized clinical trial[J]. Acta Med Okayama,2020,74(4):307-317.DOI:10.18926/amo/60369.
[27]
Liu Y,Liu S,Zhi Q,et al. Arginine-induced metabolomic perturbation in Streptococcus mutans[J].J Oral Microbiol,2022,14(1):2015166.DOI:10.1080/20002297.2021.2015166.
[28]
Rosier BT,Buetas E,Moya-Gonzalvez EM,et al. Nitrate as a potential prebiotic for the oral microbiome[J].Sci Rep,2020,10(1):12895.DOI:10.1038/s41598-020-69931-x.
[29]
Feng J,Liu J,Jiang M,et al. The role of oral nitrate-reducing bacteria in the prevention of caries:A review related to caries and nitrate metabolism[J]. Caries Res,2023,57(2):119-132.DOI:10.1159/000529162.
[30]
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides:Application informed by evolution[J]. Science,2020,368(6490):eaau5480.DOI:10.1126/science.aau5480.
[31]
Luo Y, Song Y. Mechanism of Antimicrobial peptides:Antimicrobial,anti-inflammatory and antibiofilm activities[J].Int J Mol Sci,2021,22(21):11401. DOI:10.3390/ijms2221 11401.
[32]
Kumar P,Kizhakkedathu JN,Straus SK. Antimicrobial peptides:Diversity,mechanism of action and strategies to improve the activity and biocompatibility in vivo[J]. Biomolecules,2018,8(1):4.DOI:10.3390/biom8010004.
[33]
Radaic A,Ye C,Parks B,et al. Modulation of pathogenic oral biofilms towards health with nisin probiotic[J]. J Oral Microbiol,2020,12(1):1809302.DOI:10.1080/20002297.2020.1809302.
[34]
Zhang OL,Niu JY,Yin IX,et al. Growing global research interest in antimicrobial peptides for caries management:A bibliometric analysis[J]. J Funct Biomater,2022,13(4):210.DOI:10.3390/jfb13040210.
[35]
Lv X,Yang Y,Han S,et al. Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries[J].Arch Oral Biol,2015,60(10):1482-1487. DOI:10.1016/j.archoralbio.2015.07.010.
[36]
Xiang SW,Shao J,He J,et al. A membrane-targeted peptide inhibiting PtxA of phosphotransferase system blocks Streptococcus mutans[J]. Caries Res,2019,53(2):176-193. DOI:10.1159/000489607.
[37]
Zhang P,Wu S,Li J,et al. Dual-sensitive antibacterial peptide nanoparticles prevent dental caries[J]. Theranostics,2022,12(10):4818-4833.DOI:10.7150/thno.73181.
[38]
Jiang W,Xie Z,Huang S,et al. Targeting cariogenic pathogens and promoting competitiveness of commensal bacteria with a novel pH-responsive antimicrobial peptide[J]. J Oral Microbiol,2023,15(1):2159375.DOI:10.1080/20002297.2022.2159375.
[39]
Wang C,Hong T,Cui P,et al. Antimicrobial peptides towards clinical application:Delivery and formulation[J]. Adv Drug Deliv Rev,2021,175:113818. DOI:10.1016/j.addr.2021.05.028.
[40]
Niu JY,Yin IX,Wu WKK,et al. Antimicrobial peptides for the prevention and treatment of dental caries:A concise review[J].Arch Oral Biol,2021,122:105022. DOI:10.1016/j.archoralbio.2020.105022.
[41]
Makowski M,Silva ÍC,Pais do Amaral C,et al.Advances in lipid and metal nanoparticles for antimicrobial peptide delivery[J].Pharmaceutics,2019,11(11):588. DOI:10.3390/pharmaceutics 11110588.
[42]
Lewinski N,Colvin V,Drezek R. Cytotoxicity of nanoparticles[J].Small,2008,4(1):26-49.DOI:10.1002/smll.200700595.
[43]
Benoit DSW,Sims KR Jr,Fraser D. Nanoparticles for oral biofilm treatments[J]. ACS Nano,2019,13(5):4869-4875.DOI:10.1021/acsnano.9b02816.
[44]
Zhang M,Yu Z,Lo ECM.A new pH-responsive nano micelle for enhancing the effect of a hydrophobic bactericidal agent on mature Streptococcus mutans biofilm[J]. Front Microbiol,2021,12:761583.DOI:10.3389/fmicb.2021.761583.
[45]
Xiu W,Shan J,Yang K,et al. Recent development of nanomedicine for the treatment of bacterial biofilm infections[J].VIEW,2021,2(1):20200065.DOI:10.1002/VIW.20200065.
[46]
Naha PC,Liu Y,Hwang G,et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH -activated biofilm disruption[J]. ACS Nano,2019,13(5):4960-4971.DOI:10.1021/acsnano.8b08702.
[47]
Xu VW,Nizami MZI,Yin IX,et al.Caries management with nonmetallic nanomaterials:A sYSTEMATIC review[J]. Int J Nanomedicine,2022,17:5809-5824.DOI:10.2147/ijn.S389038.
[48]
Zhang Z,Liu Y,Lu M,et al. Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans[J].Arch Oral Biol,2020,116:104762.DOI:10.1016/j.archoralbio.2020.104762.
[49]
Han S,Abiko Y,Washio J,et al. Green Tea - derived epigallocatechin gallate inhibits acid production and promotes the aggregation of streptococcus mutans and non-mutans Streptococci[J]. Caries Res,2021,55(3):205-214. DOI:10.1159/00051 5814.
[50]
He Z,Huang Z,Jiang W,et al. Antimicrobial activity of cinnamaldehyde on Streptococcus mutans biofilms[J]. Front Microbiol,2019,10:2241.DOI:10.3389/fmicb.2019.02241.
[51]
Ngokwe ZB,Wolfoviz-Zilberman A,Sharon E,et al. Transcinnamaldehyde-fighting Streptococcus mutans using nature[J].Pharmaceutics,2024,16(1):113. DOI:10.3390/pharmaceutics 16010113.
[52]
Hu Z,Tang Y,Jiang B,et al. Functional liposome loaded curcumin for the treatment of Streptococcus mutans biofilm[J].Front Chem,2023,11:1160521. DOI:10.3389/fchem.2023.1160521.
[53]
Passos MR,Almeida RS,Lima BO,et al. Anticariogenic activities of Libidibia ferrea,gallic acid and ethyl gallate against Streptococcus mutans in biofilm model[J]. J Ethnopharmacol,2021,274:114059.DOI:10.1016/j.jep.2021.114059.
[54]
André CB,Rosalen PL,Giannini M,et al. Incorporation of apigenin and tt-farnesol into dental composites to modulate the Streptococcus mutans virulence[J]. Dent Mater,2021,37(4):e201-e212.DOI:10.1016/j.dental.2020.12.005.
[55]
Sivamaruthi BS,Kesika P,Chaiyasut CA. Review of the role of probiotic supplementation in dental caries [J]. Probiotics Antimicrob Proteins,2020,12(4):1300-1309. DOI:10.1007/s12602-020-09652-9.
[56]
Nadelman P,Magno MB,Masterson D,et al.Are dairy products containing probiotics beneficial for oral health?A systematic review and meta-analysis[J]. Clin Oral Investig,2018,22(8):2763-2785.DOI:10.1007/s00784-018-2682-9.
[57]
Radaic A,de Jesus MB,Kapila YL. Bacterial anti-microbial peptides and nano-sized drug delivery systems:The state of the art toward improved bacteriocins[J]. J Control Release,2020,321:100-118.DOI:10.1016/j.jconrel.2020.02.001.
[58]
Strathdee SA,Hatfull GF,Mutalik VK,et al. Phage therapy:From biological mechanisms to future directions[J]. Cell,2023,186(1):17-31.DOI:10.1016/j.cell.2022.11.017.
[59]
Harada LK,Silva EC,Campos WF,et al. Biotechnological applications of bacteriophages:State of the art[J]. Microbiol Res,2018,212-213:38-58.DOI:10.1016/j.micres.2018.04.007.
[60]
Wolfoviz-Zilberman A,Kraitman R,Hazan R,et al. Phage targeting Streptococcus mutans in vitro and in vivo as a cariespreventive modality[J].Antibiotics(Basel),2021,10(8):1015.DOI:10.3390/antibiotics10081015.
[61]
Ben-Zaken H,Kraitman R,Coppenhagen-Glazer S,et al.Isolation and characterization of Streptococcus mutans phage as a possible treatment agent for caries[J]. Viruses,2021,13(5):825.DOI:10.3390/v13050825.
[62]
Sugai K,Kawada-Matsuo M,Nguyen-Tra Le M,et al. Isolation of Streptococcus mutans temperate bacteriophage with broad killing activity to S. mutans clinical isolates[J]. iScience,2023,26(12):108465.DOI:10.1016/j.isci.2023.108465.
[63]
Guo X,Wang X,Shi J,et al. A review and new perspective on oral bacteriophages:Manifestations in the ecology of oral diseases[J]. J Oral Microbiol,2024,16(1):2344272. DOI:10.1080/20002297.2024.2344272.
[64]
Hatfull GF,Dedrick RM,Schooley RT. Phage therapy for antibiotic - resistant bacterial infections[J]. Annu Rev Med,2022,73:197-211.DOI:10.1146/annurev-med-080219-122208.
[1] 吴雪烁, 冯景, 周毅. 乳腺癌组织微生物群特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 305-308.
[2] 杨友涵, 文印宪, 陈廖斌. 噬菌体用于关节假体周围感染治疗的研究进展[J]. 中华关节外科杂志(电子版), 2024, 18(01): 125-130.
[3] 冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.
[4] 龚静, 王荣. 绵阳地区136例3~5岁儿童口腔微生物菌群结构及其对患龋的影响[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 100-107.
[5] 梁坤, 曾梓涵, 谢力, 于珂, 钟欣楠, 陈业娴, 刘锴, 黄睿洁. 新型烟草制品与传统卷烟对口腔常见疾病的影响研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 137-142.
[6] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[7] 刘传瑾, 李伶, 王园红, 陈永洁, 覃子芸, 邱荣敏. 父母外出务工对玉林市玉州区留守儿童口腔健康相关指标的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 180-187.
[8] 庞亮月, 林焕彩. 人工智能在龋病诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 162-166.
[9] 刘红艳, 韦曦, 凌均棨. 根管封药的应用现状及研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 69-74.
[10] 廖莹, 邢向辉. 南京市视力障碍儿童患龋状况、龋活跃性和口腔卫生习惯调查及相关性分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 222-227.
[11] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[12] 韩明, 赵岩. 组织工程策略延缓椎间盘退变的现状与前景[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 310-314.
[13] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[14] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[15] 潘振, 陈杰敏, 胡成进. 创伤弧菌溶细胞素噬菌体单链抗体库的构建[J]. 中华卫生应急电子杂志, 2021, 07(05): 287-291.
阅读次数
全文


摘要