[1] |
|
[2] |
|
[3] |
Hargreaves KM,Berman LH. Cohen′s Pathways of the Pulp[M]. 11th ed. St Louis:Elsevier,2016:260-262.
|
[4] |
周学东.牙体牙髓病学[M]. 5版.北京:人民卫生出版社,2020:199.
|
[5] |
Hussein H, Kishen A. Local immunomodulatory effects of intracanal medications in apical periodontitis[J]. J Endod, 2022, 48(4):430-456. DOI: 10.1016/j.joen.2022.01.003.
|
[6] |
Rotstein I,Ingle JI. Ingel′s Endodontics[M]. 7th ed. Raleigh:PMPH USA Ltd.,2019:657-660.
|
[7] |
Bystrom A, Claesson R, Sundqvist G. The antibacterial effect of camphorated paramonochlorophenol,camphorated phenol and calcium hydroxide in the treatment of infected root canals[J]. Endod Dent Traumatol, 1985, 1(5):170-175. DOI: 10.1111/j.1600-9657.1985.tb00652.x.
|
[8] |
Sjögren U, Figdor D, Spångberg L,et al. The antimicrobial effect of calcium hydroxide as a short-term intracanal dressing[J]. Int Endod J, 1991, 24(3):119-125. DOI: 10.1111/j.1365-2591.1991.tb00117.x.
|
[9] |
Waltimo TMT, Orstavik D, Siren EK,et al. In vitro susceptibility of Candida albicans to four disinfectants and their combinations[J]. Int Endod J, 1999, 32(6):421-429. DOI: 10.1046/j.1365-2591.1999.00237.x.
|
[10] |
Mohammadi Z, Dummer PMH. Properties and applications of calcium hydroxide in endodontics and dental traumatology:Calcium hydroxide in endodontics and dental traumatology[J]. Int Endod J, 2011, 44(8):697-730. DOI: 10.1111/j.1365-2591.2011.01886.x.
|
[11] |
Haapasalo HK, Sirén EK, Waltimo TM,et al. Inactivation of local root canal medicaments by dentine:An in vitro study[J]. Int Endod J, 2000, 33(2):126-131. DOI: 10.1046/j.1365-2591.2000.00291.x.
|
[12] |
Rosenberg B, Murray PE, Namerow K. The effect of calcium hydroxide root filling on dentin fracture strength[J]. Dent Traumatol, 2007, 23(1):26-29. DOI: 10.1111/j.1600-9657.2006.00453.x.
|
[13] |
Hawkins JJ, Torabinejad M, Li Y,et al. Effect of three calcium hydroxide formulations on fracture resistance of dentin over time[J]. Dent Traumatol, 2015, 31(5):380-384. DOI: 10.1111/edt.12175.
|
[14] |
Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study[J]. Dent Traumatol, 1992, 8(2):45-55. DOI: 10.1111/j.1600-9657.1992.tb00228.x.
|
[15] |
Yassen GH, Platt JA. The effect of nonsetting calcium hydroxide on root fracture and mechanical properties of radicular dentine:a systematic review[J]. Int Endod J, 2013, 46(2):112-118. DOI: 10.1111/j.1365-2591.2012.02121.x.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
Lima K, Fava L, Siqueirajr JF Jr. Susceptibilities of Enterococcus faecalis biofilms to some antimicrobial medications[J]. J Endod, 2001, 27(10):616-619. DOI: 10.1097/00004770-200110000-00004.
|
[20] |
Lindskog S, Pierce AM, Blomlöf L. Chlorhexidine as a root canal medicament for treating inflammatory lesions in the periodontal space[J]. Endod Dent Traumatol, 1998, 14(4):186-190. DOI: 10.1111/j.1600-9657.1998.tb00835.x.
|
[21] |
Komorowski R, Grad H, Wu XY,et al. Antimicrobial substantivity of chlorhexidine-treated bovine root dentin[J]. J Endod, 2000, 26(6):315-317. DOI: 10.1097/00004770-200006000-00001.
|
[22] |
Martinho FC, Gomes CC, Nascimento GG,et al. Clinical comparison of the effectiveness of 7- and 14-day intracanal medications in root canal disinfection and inflammatory cytokines[J]. Clin Oral Investig, 2018, 22(1):523-530. DOI: 10.1007/s00784-017-2143-x.
|
[23] |
Siren EK, Haapasalo MPP, Waltimo TMT,et al. In vitro antibacterial effect of calcium hydroxide combined with chlorhexidine or iodine potassium iodide on Enterococcus faecalis[J]. Eur J Oral Sci, 2004, 112(4):326-331. DOI: 10.1111/j.1600-0722.2004.00144.x.
|
[24] |
Manzur A, González A, Pozos A,et al. Bacterial quantification in teeth with apical periodontitis related to instrumentation and different intracanal medications:A randomized clinical trial[J]. J Endod, 2007, 33(2):114-118. DOI: 10.1016/j.joen.2006.11.003.
|
[25] |
Ferreira NS, Martinho FC, Cardoso FGR,et al. Microbiological profile resistant to different intracanal medications in primary endodontic infections[J]. J Endod, 2015, 41(6):824-830. DOI: 10.1016/j.joen.2015.01.031.
|
[26] |
Ordinola-Zapata R, Noblett WC, Perez-Ron A,et al. Present status and future directions of intracanal medicaments[J]. Int Endod J, 2022, 55(Suppl 3):613-636. DOI: 10.1111/iej.13731.
|
[27] |
Ordinola-Zapata R, Bramante CM, Minotti PG,et al. Antimicrobial activity of triantibiotic paste,2% chlorhexidine gel,and calcium hydroxide on an intraoral-infected dentin biofilm model[J]. J Endod, 2013, 39(1):115-118. DOI: 10.1016/j.joen.2012.10.004.
|
[28] |
Windleyiii W 3rd, Teixeira F, Levin L,et al. Disinfection of immature teeth with a triple antibiotic paste[J]. J Endod, 2005, 31(6):439-443. DOI: 10.1097/01.don.0000148143.80283.ea.
|
[29] |
Galler KM, Krastl G, Simon S,et al. European Society of Endodontology position statement:Revitalization procedures[J]. Int Endod J, 2016, 49(8):717-723. DOI: 10.1111/iej.12629.
|
[30] |
Lima SMF, de Pádua GM, Sousa MGDC,et al. Antimicrobial peptide-based treatment for endodontic infections:Biotechnological innovation in endodontics[J]. Biotechnol Adv, 2015, 33(1):203-213. DOI: 10.1016/j.biotechadv.2014.10.013.
|
[31] |
Wang Y, Wang X, Jiang W,et al. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans[J]. J Oral Microbiol, 2018, 10(1):1442089. DOI: 10.1080/20002297.2018.1442089.
|
[32] |
Gorr SU, Abdolhosseini M. Antimicrobial peptides and periodontal disease:Antimicrobial peptides[J]. J Clin Periodontol, 2011, 38(Suppl 11):126-141. DOI: 10.1111/j.1600-051X.2010.01664.x.
|
[33] |
Zhou L, Wong HM, Zhang YY,et al. Constructing an antibiofouling and mineralizing bioactive tooth surface to protect against decay and promote self-healing[J]. ACS Appl Mater Interfaces, 2020, 12(2):3021-3031. DOI: 10.1021/acsami.9b19745.
|
[34] |
Mai S, Mauger MT, Niu LN,et al. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections[J]. Acta Biomater, 2017, 49:16-35. DOI: 10.1016/j.actbio.2016.11.026.
|
[35] |
Huo L, Huang X, Ling J,et al. Selective activities of STAMPs against Streptococcus mutans[J]. Exp Ther Med, 2017, 15(2):1886-1893. DOI: 10.3892/etm.2017.5631.
|
[36] |
Huo L, Zhang K, Ling J,et al. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans[J]. Arch Oral Biol, 2011, 56(9):869-876. DOI: 10.1016/j.archoralbio.2011.02.004.
|
[37] |
Mai J, Tian XL, Gallant JW,et al. A novel target-specific,salt-resistant antimicrobial peptide against the cariogenic pathogen Streptococcus mutans[J]. Antimicrob Agents Chemother, 2011, 55(11):5205-5213. DOI: 10.1128/AAC.05175-11.
|
[38] |
Lee SH, Baek DH. Antibacterial and neutralizing effect of human β-defensins on Enterococcus faecalis and Enterococcus faecalis lipoteichoic acid[J]. J Endod, 2012, 38(3):351-356. DOI: 10.1016/j.joen.2011.12.026.
|
[39] |
Lee JK, Park YJ, Kum KY,et al. Antimicrobial efficacy of a human β-defensin-3 peptide using an Enterococcus faecalis dentine infection model[J]. Int Endod J, 2013, 46(5):406-412. DOI: 10.1111/iej.12002.
|
[40] |
Turner SR, Love RM, Lyons KM. An in-vitro investigation of the antibacterial effect of nisin in root canals and canal wall radicular dentine[J]. Int Endod J, 2004, 37(10):664-671. DOI: 10.1111/j.1365-2591.2004.00846.x.
|
[41] |
Tong Z, Zhang L, Ling J,et al. An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans[J]. PLoS ONE, 2014, 9(6):e99513. DOI: 10.1371/journal.pone.0099513.
|
[42] |
Tong Z, Zhang Y, Ling J,et al. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis[J]. PLoS ONE, 2014, 9(2):e89209. DOI: 10.1371/journal.pone.0089209.
|
[43] |
Tong Z, Ling J, Lin Z,et al. The effect of MTADN on 10 Enterococcus faecalis isolates and biofilm:An in vitro study[J]. J Endod, 2013, 39(5):674-678. DOI: 10.1016/j.joen.2012.12.010.
|
[44] |
中华人民共和国国家标准化管理委员会. GB/T 30544.4-2019纳米科技术语第4部分:纳米结构材料[S].北京:中国标准出版社,2019.
|
[45] |
Cao W, Zhang Y, Wang X,et al. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond[J]. J Mater Sci-Mater M, 2018, 29(10):162. DOI: 10.1007/s10856-018-6172-z.
|
[46] |
Dizaj SM, Lotfipour F, Barzegar-Jalali M,et al. Antimicrobial activity of the metals and metal oxide nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2014, 44:278-284. DOI: 10.1016/j.msec.2014.08.031.
|
[47] |
Nasim I, Jaju KK, Shamly M,et al. Effect of nanoparticle based intra-canal medicaments on root dentin micro-hardness[J]. Bioinformation, 2022, 18(3):226-230. DOI: 10.6026/97320630018226.
|
[48] |
Zehnder M, Söderling E, Salonen J,et al. Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro[J]. J Endod, 2004, 30(4):220-224. DOI: 10.1097/00004770-200404000-00009.
|
[49] |
|
[50] |
Hou X, Fu H, Han Y,et al. Analysis of transcriptome in Enterococcus faecalis treated with silver nanoparticles[J]. J Nanosci Nanotechno, 2020, 20(2):1046-1055. DOI: 10.1166/jnn.2020.16940.
|
[51] |
Kishen A, Shi Z, Shrestha A,et al. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection[J]. J Endod, 2008, 34(12):1515-1520. DOI: 10.1016/j.joen.2008.08.035.
|
[52] |
Nasim I, Shamly M, Jaju KK,et al. Antioxidant and anti-inflammatory activity of a nanoparticle based intracanal drugs[J]. Bioinformation, 2022, 18(5):450-454. DOI: 10.6026/97320630018450.
|