切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (04) : 283 -288. doi: 10.3877/cma.j.issn.1674-1366.2015.04.005

所属专题: 文献

基础研究

纳米银抗菌剂的骨内相容性研究
王梓屹1, 高燕2,(), 胡晓莉2, 庄沛林2, 蒋晓琼2, 马可2   
  1. 1. 510260 广州医科大学附属第二医院口腔科
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2015-04-19 出版日期:2015-08-01
  • 通信作者: 高燕
  • 基金资助:
    广东省科技计划(2010B031100023)

Intraosseous biocompactability of silver nanoparticles

Ziyi Wang1, Yan Gao2,(), Xiaoli Hu2, Peilin Zhuang2, Xiaoqiong Jiang2, Ke Ma2   

  1. 1. Department of Stomatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
    2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-04-19 Published:2015-08-01
  • Corresponding author: Yan Gao
  • About author:
    Corresponding author: Gao Yan, Email: , Tel: 020-83822804
引用本文:

王梓屹, 高燕, 胡晓莉, 庄沛林, 蒋晓琼, 马可. 纳米银抗菌剂的骨内相容性研究[J]. 中华口腔医学研究杂志(电子版), 2015, 09(04): 283-288.

Ziyi Wang, Yan Gao, Xiaoli Hu, Peilin Zhuang, Xiaoqiong Jiang, Ke Ma. Intraosseous biocompactability of silver nanoparticles[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(04): 283-288.

目的

观察纳米银抗菌剂植入豚鼠下颌骨后产生的组织反应,评价其组织相容性。

方法

选取豚鼠20只,在其双侧下颌骨分别植入载有0.02%纳米银凝胶和氢氧化钙糊剂的铁氟龙载体,术后4及12周各处死10只动物,解剖含植入物的下颌骨块并行组织学切片染色,光学显微镜下观察记录炎症反应程度,并以Kruskal-Wallis非参数检验分析结果。

结果

4周时,0.02%纳米银凝胶组炎症计分3例为0分、7例为1分,镜下见少量淋巴细胞、多核巨细胞等慢性炎症细胞浸润,且可见类骨质形成;氢氧化钙组5例为1分、5例为2分,可见糊剂被部分吸收,炎性肉芽组织进入载体腔内。两组间炎症计分差异有统计学意义(Z=2.805,P=0.005)。12周时,0.02%纳米银凝胶组计分8例为0分、2例为1分,可见载体开口处被薄层纤维结缔组织包绕,少有炎症细胞浸润;氢氧化钙组6例为0分、4例为1分,可见成熟肉芽组织长入载体内部,骨组织无或轻度炎症浸润。两组间炎症计分差异无统计学意义(Z=0.951,P=0.342)。

结论

纳米银抗菌剂在豚鼠颌骨内组织相容性良好,且具有促进骨组织生长修复的潜能,将其应用于根管消毒有望提高根管治疗成功率。

Objective

The aim of this study was to evaluate the intraosseous biocompatibility of silver nanoparticles implanted in mandibular bone of guinea pigs.

Methods

Two teflon carriers loaded with 0.02% silver nanoparticle gel and calcium hydroxide paste were respectively implanted into either side of the mandibles of 20 guinea-pigs. After 4 and 12 weeks, guinea-pigs were killed, and the specimens were prepared for routine histological examination. Inflammation responses were evaluated by light microscope. The results were analyzed by Kruskal-Wallis nonparametric test.

Results

After 4 weeks, the inflammation scores of 3 samples were 0, and the other 7 samples were 1 in 0.02% silver nanoparticle gel group. Chronic inflammatory cells such as lymphocytes and polykaryocytes were found under light microscopy. The scores of 5 samples in the group of calcium hydroxide were 1, andthe other 5 samples were 2. The root canal paste were partly absorbed, and granulation tissues grew into the carriers. A significantly statistical difference was found between the scores of the two groups(Z=2.805, P=0.005). After 12 weeks, the scores of 8 samples in silver nanopartical group were 0, and the other 2 samples were 1. In calcium hydroxide group, 6 samples were scored 0, and the other 4 samples were scored 1. Both was no significant difference(Z=0.951, P= 0.342).

Conclusion

Silver nanoparticle shows good biocompatibility in bone tissue and should be further evaluated as an intra-canal medicament during root canal therapy.

图3 氢氧化钙糊剂植入豚鼠下颌骨4周组织学切片(苏木精-伊红× 50)可见糊剂被吸收,肉芽组织长入载体内,肉芽组织内有慢性炎症细胞浸润
图5 载体植入豚鼠颌骨后组织切片(Brown & Brenn × 50)
表1 各组组织切片苏木精-伊红染色炎症计分结果(例)
[1]
Appelbe OK, Sedgley CM. Effects of prolonged exposure to alkaline pH on Enterococcus faecalis survival and specific gene transcripts[J]. Oral Microbiology and Immunology, 2007, 22(3): 169-174.
[2]
Fabrega J, Fawcett SR, Renshaw JC, et al. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter[J]. Environ Sci Technol, 2009, 43(19): 7285-7290.
[3]
庄沛林,高燕,凌均棨,等.纳米银对牙本质表面粪肠球菌生物膜的杀菌作用[J/CD].中华口腔医学研究杂志:电子版,2011,5(5): 463-469.
[4]
庄沛林,高燕,凌均棨,等.纳米银干预牙本质表面粪肠球菌黏附的实验研究[J].口腔医学研究,2012,28(4): 306-309.
[5]
Fédération Dentaire Internationale. Recommended standard practices for the bio-logical evaluation of dental materials[J]. Int Dent J, 1980(30): 174-176.
[6]
Sousa CJ, Montes CR, Pascon EA, et al. Comparison of the intraosseous biocompatibility of AH Plus, EndoREZ, and Epiphany root canal sealers[J]. J Endod, 2006, 32(7): 656-662.
[7]
Morinaga K, Nakagawa K, Carr GB. Tissue reactions after intraosseous implantation of three retrofilling materials[J]. Bull Tokyo Dent Coll, 2003, 44(1): 1-7.
[8]
Gomes-Filho JE, Bernabé PF, Nery MJ, et al. Reaction of rat connective tissue to a new calcium hydroxide-based sealer[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 106(2): e71-e76.
[9]
Ozbas H, Yaltirik M, Bilgic B, et al. Reactions of connective tissue to compomers, composite and amalgam root-end filling materials[J]. Int Endod J, 2003, 36(4): 281-287.
[10]
Spångberg L. Biological effects of root canal filling materials. 7. Reaction of bony tissue to implanted root canal filling material in guineapigs[J]. Odontol Tidsk, 1969, 77(2): 133-159.
[11]
Pissiotis E, Spângberg L. Reaction of bony tissue to implanted silver glass ionomer and a reinforced zinc oxide-eugenol cement[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 89(5): 623-629.
[12]
Wu D, Fan W, Kishen A, et al. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm[J]. J Endod, 2014, 40(2): 285-290.
[13]
Arora S, Jain J, Rajwade JM, et al. Cellular responses induced by silver nanoparticles: In vitro studies[J]. Toxicol Lett, 2008, 179(2): 93-100.
[14]
Li Xinping, Li Shengli, Zhang Miaotao, et al. Evaluations of antibacterial activity and cytotoxicity on Ag nanoparticles[J].稀有金属材料与工程, 2011, 40(2): 209-214.
[15]
Jena P, Mohanty S, Mallick R, et al. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells[J]. Int J Nanomedicine, 2012(7): 1805-1818.
[16]
Gomes-Filho JE, Silva FO, Watanabe S, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution[J]. J Endod, 2010, 36(10): 1698-1702.
[17]
Arican M, Hatipoglu F, Uyaroglu A, et al. Effect of Acticoat® and Cutinova Hydro® on wound healing[J]. Int Wound J, 2013, 10(5): 549-554.
[18]
Mahmood M, Li Z, Casciano D, et al. Nanostructural materials increase mineralization in bone cells and affect gene expression through miRNA regulation[J]. J Cell Mol Med, 2011, 15(11): 2297-2306.
[19]
Mohammadi Z, Dummer PM. Properties and applications of calcium hydroxide in endodontics and dental traumatology[J]. Int Endod J, 2011, 44(8): 697-730.
[20]
Eldeniz AU, Mustafa K, Ørstavik D, et al. Cytotoxicity of new resin-, calcium hydroxide - and silicone-based root canal sealers on fibroblasts derived from human gingiva and L929 cell lines[J]. Int Endod J, 2007, 40(5): 329-337.
[21]
Kolokouris I, Economides N, Beltes P, et al. In vivo comparison of the biocompatibility of two root canal sealers implanted into the subcutaneous connective tissue of rats[J]. J Endod, 1998, 24(2): 82-85.
[22]
Andolfatto C, da Silva GF, Cornélio AL, et al. Biocompatibility of intracanal medications based on calcium hydroxide[J]. ISRN Dent, 2012: 904963.
[23]
Evans M, Davies JK, Sundqvist G, et al. Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide[J]. Int Endod J, 2002, 35(3): 221-228.
[24]
Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology, 2005, 16(10): 2346-2353.
[25]
Samberg ME, Oldenburg SJ, Monteiro-Riviere NA, et al. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro[J]. Environ Health Perspect, 2010, 118(3): 407-413.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 于承浩, 张益, 陈进利, 戚超, 李海峰, 于腾波. 肩袖补片在巨大肩袖损伤治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(02): 225-230.
[3] 黄弘轩, 白波, 赖琛, 王瑛, 陈艺, 张姝江. 高分子修饰细菌纤维素细胞相容性的初步研究[J]. 中华关节外科杂志(电子版), 2020, 14(01): 63-67.
[4] 张廷帅, 邹健宇, 陈汉政, 刘日许, 郑仕聪, 陈艺, 张姝江, 姚咏嫦. 三维共培养体系促进去分化的软骨细胞再分化的实验研究[J]. 中华关节外科杂志(电子版), 2019, 13(06): 693-698.
[5] 贾古友, 刘树民, 王晗, 唐绪军, 王晓光, 刘震, 胡永成. 抗菌涂层改性预防骨科内植物感染生物膜形成的研究进展[J]. 中华关节外科杂志(电子版), 2018, 12(04): 544-550.
[6] 王晟, 许卓然, 夏德萌, 李磊, 许硕贵. 穿皮骨整合截肢假体与上皮细胞生长迁移的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(02): 166-169.
[7] 魏莹, 陈志坚, 杨焕纳, 李允, 田社民, 查新建, 夏成德, 贺芳. 软聚硅酮银离子敷料用于婴幼儿深Ⅱ度烧伤创面治疗的临床疗效观察[J]. 中华损伤与修复杂志(电子版), 2018, 13(06): 459-461.
[8] 黄志锋, 郑少逸, 赖文, 熊兵, 刘族安, 李汉华, 孙传伟, 马亮华, 罗红敏. 京万红软膏和纳米银凝胶治疗糖尿病足溃疡的临床疗效比较研究[J]. 中华损伤与修复杂志(电子版), 2018, 13(06): 455-458.
[9] 刘红艳, 韦曦, 凌均棨. 根管封药的应用现状及研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 69-74.
[10] 姚丽萍, 张蕾, 林玉红, 张梦晗, 卢志山. 纳米银溶液用于慢性根尖周炎根管内封药的实验动物研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(02): 95-100.
[11] 孙玥, 罗恩, 纪焕中, 陈贵征, 龚涛, 刘显. 形状记忆可吸收支架的制备及其在骨组织应用的体外研究[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 244-249.
[12] 帕尔哈提·阿布肚热合曼, 白尔娜·吾守尔, 木合塔尔·霍加, 刘晓文. 兔牙髓干细胞与Pluronic F-127嵌段共聚物的体外相容性[J]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 97-103.
[13] 于茜, 周建辉, 赵小淋, 谢大洋, 曹雪莹. 血液净化膜材料的临床发展[J]. 中华肾病研究电子杂志, 2021, 10(02): 103-108.
[14] 薛杉, 吴钢, 罗诗雨, 张鹏, 张洪钿, 法志强, 郭燕舞, 柯以铨, 徐如祥. 啮齿动物上皮祖细胞与生物材料水凝胶生物相容性的体外研究[J]. 中华神经创伤外科电子杂志, 2015, 01(06): 26-33.
[15] 谭亚运, 张民. 硅酸盐/磷酸盐复合型骨水泥的研究现状及新进展[J]. 中华临床医师杂志(电子版), 2017, 11(13): 1993-1996.
阅读次数
全文


摘要