切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (04) : 244 -249. doi: 10.3877/cma.j.issn.1674-1366.2016.04.003

所属专题: 文献

基础研究

形状记忆可吸收支架的制备及其在骨组织应用的体外研究
孙玥1, 罗恩1, 纪焕中1, 陈贵征1, 龚涛1, 刘显1,()   
  1. 1. 610041 成都,四川大学华西口腔医院口腔疾病研究国家重点实验室
  • 收稿日期:2016-04-24 出版日期:2016-08-01
  • 通信作者: 刘显
  • 基金资助:
    国家自然科学基金(青年科学基金项目,31400829); 四川省科技厅科技支撑计划(2015SZ0127)

Preparation of shape memory polymers scaffold and in vitro study for bone tissue application

Yue Sun1, En Luo1, Huanzhong Ji1, Guizheng Chen1, Tao Gong1, Xian Liu1,()   

  1. 1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-04-24 Published:2016-08-01
  • Corresponding author: Xian Liu
  • About author:
    Corresponding author: Liu Xian, Email:
引用本文:

孙玥, 罗恩, 纪焕中, 陈贵征, 龚涛, 刘显. 形状记忆可吸收支架的制备及其在骨组织应用的体外研究[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 244-249.

Yue Sun, En Luo, Huanzhong Ji, Guizheng Chen, Tao Gong, Xian Liu. Preparation of shape memory polymers scaffold and in vitro study for bone tissue application[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(04): 244-249.

目的

研究具有形状记忆功能的支架材料的制备方法,探讨其物理性能及生物相容性,为骨组织工程的应用作奠定基础。

方法

热压成形术合成孔隙大小及孔隙率适宜的形状记忆聚合物(SMP)支架,应用体式显微镜观察支架材料的形变过程,扫描电镜考察支架材料塑形前后的孔隙变化以及细胞在支架表面附着生长的情况,同时将兔骨髓间充质干细胞(BMSC)接种于支架材料,运用死活细胞染色方法检测该支架材料的生物相容性。数据分析采用方差分析,两两比较采用SNK检验。

结果

体式显微镜展现了材料自形变后的中间状态恢复到原始状态,形变恢复率约91%,合成的支架材料在人体温度(37℃)下具有形状记忆特性;扫描电镜下可见未形变的支架材料其具有良好的孔隙率(90.6 ± 5.2)%,原始孔隙大小约165 μm,压缩状态的孔隙大小约为33 μm,同时BMSC与支架材料表面附着良好;死活细胞染色结果显示,BMSC在SMP支架表面培养1、7、14 d的活细胞率分别为(81.5 ± 2.2)%、(86.3 ± 1.9)%、(82.1 ± 1.8)%,空白对照组1、7、14 d活细胞率分别为(82.3 ± 1.7)%、(88.4 ± 1.4)%、(83.7 ± 2.1)%,两组间活细胞率差异无统计学意义(F= 0.380,P= 0.555)。而SMP支架组1、7、14 d的活细胞密度分别为(91 ± 2.3)、(202 ± 4.8)和(617 ± 5.5)个/mm2,空白对照组1、7、14 d活细胞密度分别为(83 ± 4.5)、(219 ± 5.3)和(599 ± 7.2)个/mm2,均呈增长模式。

结论

制备所得支架材料孔隙均一,形变温度为37℃,具有良好形状记忆特性及生物相容性,能响应人体温度恢复到塑型前形状,在微创手术中有巨大的应用潜能。

Objective

To fabricate a new smart shape memory polymers (SMP) scaffold and to evaluate its physical and biological properties in bone tissue engineering.

Methods

The thermo-compression method was used to build the SMP scaffold with proper pore size and porosity. The shape recovery process was detected by stereo-microscope. Electron microscope was used to check its pore size change and the cell attachment on the SMP-scaffold. Live/dead staining was used to test its biocompatibility of the scaffold. Experimental data were analyzed using ANOVA procedure. Differences between groups were compared with SNK- test.

Results

The pore size of SMP scaffold was 100 ~ 300 μm and the porosity was (90.6 ± 5.2) %. Under stereo-microscope, the SMP scaffold had an anticipated shape memory recovery in vitro from a small, compact structure to a voluminous structure; the recovery rate was 91%. SEM result demonstrated that the BMSCs attached and spread very well on the wall surface. The live/dead staining indicated that the living cell rates of SMP scaffold group after being incubated for 1, 7 and 14 days was (81.5 ± 2.2) %, (86.3 ± 1.9) %, and (82.1 ± 1.8) %, while the control group was (82.3 ± 1.7) %, (88.4 ± 1.4) %, and (83.7±2.1) %, respectively. There was no significant difference (F= 0.380, P= 0.555) in cell survival between the control and SMP scaffold groups. The results of cell density were (91 ± 2.3) , (202 ± 4.8) , and (617 ± 5.5) cells/mm2 of SMP scaffold group, (83 ± 4.5) , (219 ± 5.3) , and (599 ± 7.2) cells/mm2 of the control group in 1, 7 and 14 days, respectively, indicated that cell reproduction rate of both groups were on the rise.

Conclusion

SMP scaffold has excellent shape memory function and biocompatibility, which shows great application potential in the minimally invasive surgery.

图1 形状记忆聚合物支架形变回复过程体式显微镜图像
图2 形状记忆聚合物支架塑形前后扫描电镜结果
图3 原代及第三代骨髓间充质干细胞光学显微镜图像
图4 骨髓间充质干细胞在形状记忆聚合物支架培养1、7、14 d及对照组的死活细胞试验荧光显微镜图像(× 100)
图5 形状记忆聚合物支架培养后死活细胞染色的定量分析结果
图6 骨髓间充质干细胞附着于支架表面的扫描电镜图像
[1]
Hanus J, Záhora J, Volenec K. Use of thermoelectric properties of materials with shape memory in medicine[J]. Sb Lek,1998,99(4):515-520.
[2]
Gall K, Yakacki CM, Liu Y,et al. Thermomechanics of the shape memory effect in polymers for biomedical applications[J]. J Biomed Mater Res A,2005,73(3):339-348.
[3]
Langer R, Tirrell DA. Designing materials for biology and medicine[J]. Nature,2004,428(6982):487-492.
[4]
Lendlein A, Langer R. Biodegradable,elastic shape-memory polymers for potential biomedical applications[J]. Science,2002,296(5573):1673-1676.
[5]
Small W, Buckley PR, Wilson TS,et al. Shape memory polymer stent with expandable foam:a new concept for endovascular embolization of fusiform aneurysms[J]. IEEE Trans Biomed Eng,2007,54(6 Pt 2):1157-1160.
[6]
Xue L, Dai S, Li Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents[J]. Biomaterials,2010,31(32):8132-8140.
[7]
Sokolowski W, Metcalfe A, Hayashi S,et al. Medical applications of shape memory polymers[J]. Biomed Mater,2007,2(1):S23-S27.
[8]
李彦林.骨组织工程的支架材料[J].国外医学(生物医学工程分册),2001,24(2):73-77.
[9]
Rezwan K, Chen QZ, Blaker JJ,et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27(18):3413-3431.
[10]
Kingham E, Oreffo RO. Embryonic and induced pluripotent stem cells:understanding,creating,and exploiting the nano-niche for regenerative medicine[J]. ACS Nano,2013,7(3):1867-1881.
[11]
朱光明,刘忠让.形状记忆聚合物及其在生物医学工程中的应用[J].生物医学工程学杂志,2005,22(5):1082-1084.
[12]
曹谊林.组织工程学的研究进展[J].中国美容医学,2005,14(2):134-135.
[13]
Hollister SJ. Porous scaffold design for tissue engineering[J]. Nat Mater,2005,4(7):518-524.
[14]
Penk A, Forster Y, Scheidt HA,et al. The pore size of PLGA bone implants determines the de novo formation of bone tissue in tibial head defects in rats[J]. MagnReson Med,2013,70(4):925-935.
[15]
Neuss S, Blomenkamp I, Stainforth R,et al. The use of a shape-memory poly(epsilon-caprolactone)dimethacrylatenetwork as a tissue engineering scaffold[J]. Biomaterials,2009,30(9):1697-1705.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[5] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[6] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[7] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 冯欢, 杨凤霞, 许静, 黄婧琼, 刘晓青, 陈艳, 褚玲玲. 胸腹部创面愈合的研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 840-842.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要