切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (04) : 238 -243. doi: 10.3877/cma.j.issn.1674-1366.2016.04.002

所属专题: 文献

基础研究

变异链球菌转肽酶A基因型与乳牙高龋的相关性
于丽霞1, 庄沛林2, 林焕彩1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室;510120 广州,中山大学孙逸仙纪念医院口腔科
  • 收稿日期:2016-06-14 出版日期:2016-08-01
  • 通信作者: 林焕彩
  • 基金资助:
    国家自然科学基金(81271123)

The correlation between the sortaseA genotype of Streptococcus mutans and high-severity childhood caries

Lixia Yu1, Peilin Zhuang2, Huancai Lin1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Stomatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
  • Received:2016-06-14 Published:2016-08-01
  • Corresponding author: Huancai Lin
  • About author:
    Corresponding author: Lin Huancai, Email:
引用本文:

于丽霞, 庄沛林, 林焕彩. 变异链球菌转肽酶A基因型与乳牙高龋的相关性[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 238-243.

Lixia Yu, Peilin Zhuang, Huancai Lin. The correlation between the sortaseA genotype of Streptococcus mutans and high-severity childhood caries[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(04): 238-243.

目的

在控制乳牙龋危险指标的前提下,探讨乳牙高龋与变异链球菌(简称变链菌)转肽酶A(srtA)基因型的关系。

方法

采用ABI Variant Reporter软件对121株分离于高龋儿童的变链菌和121株分离于无龋儿童的变链菌srtA基因测序结果进行基因型分析。采用单因素分析方法分析srtA基因型数量、srtA各基因型以及社会、行为变量在两组中的频率分布情况,采用多因素Logistic回归方法控制混杂因素,分析变链菌srtA基因型与乳牙高龋的相关性。

结果

共发现15种基因型,其中无龋组中9种,高龋组中11种。3A基因型在无龋组中的突变率高于高龋组(P= 0.033),3E基因型在高龋组中的突变率高于无龋组(P= 0.037)。多因素分析结果表明:高月龄、低出生体重、过长的母乳喂养时间、高固体糖摄入频率、较高的可视菌斑百分率、较少的srtA 3A基因型与乳牙高龋相关。

结论

在有变链菌定植的儿童中,变链菌srtA 3A基因型与乳牙龋易感性相关。此外,月龄、出生体重、母乳持续喂养时间、固体糖摄入频率、可视菌斑等因素也参与早期儿童龋的发生、发展。

Objectives

To make a primary research on the relationship between genotypes of sortase A gene (srtA) of Streptococcus mutans (S.mutans) and high-severity childhood caries on the base of existenceof no other factors related to childhood caries.

Methods

The ABI Variant Reporter software was used to analyze the genotypes of the srtA gene of 121 S.mutans strains isolated from the high-severity caries children and 121 S.mutans strains isolated from the caries-free children. Bivariate analysis was used to analyze the srtA genotype distribution and the frequencies of social and behavioural variants between groups. Multiple logistic regression models were used to assess the relationship between the srtA genotype and childhood caries after controlling confounding factors.

Results

A total of 15 genotypes were found: 9 in caries free group and 11 in high-severity caries group. The frequency of 3A genotype was significantly higher in caries free group than high-severity caries group (P= 0.033) . The frequency of 3E genotype was significantly higher in high-severity caries group than caries free group (P= 0.037) . The best-fitting model showed that older age (months) , low weight at birth, high frequencies of solid sugar consumption, prolonged breastfeeding, a high proportion of visible plaque, and 3A genotype of the srtA gene of S.mutans were associated with high-severity caries in children.

Conclusions

The present study suggested that the 3A genotype of the srtA gene of S.mutans may correlate with caries susceptibility in children. In addition, age, weight at birth, duration of breastfeeding, solid sugar consumption, and poor oral hygiene contributed to primary childhood caries.

表1 PCR扩增引物及产物片段大小
表2 研究对象的主要变量及其分类或记分
表3 变异链球菌srtA功能区基因型命名及碱基突变情况
表4 变异链球菌srtA功能区基因型与乳牙高龋的相关性分析(n= 121)
图1 测序样本序列比对图
表5 变异链球菌srtA功能区基因型与乳牙高龋相关性的Logistic回归分析
[1]
Krzyściak W, Jurczak A, Kościelniak D,et al. The virulence of Streptococcus mutans and the ability to form biofilms[J]. Eur J Clin Microbiol Infect Dis,2014,33(4):499-515.
[2]
Lembo FL, Longo PL, Ota-Tsuzuki C,et al. Genotypic and phenotypic analysis of Streptococcus mutans from different oral cavity sites of caries-free and caries-active children[J]. Oral Microbiol Immunol,2007,22(5):313-319.
[3]
Zhang L, Foxman B, Drake DR,et al. Comparative whole-genome analysis of Streptococcus mutans isolates within and among individuals of different caries status[J]. Oral Microbiol Immunol,2009,24(3):197-203.
[4]
Napimoga MH, Kamiya RU, Rosa RT,et al. Genotypic diversity and virulence traits of Streptococcus mutans in caries-free and caries-active individuals[J]. J Med Microbiol,2004,53(Pt 7):697-703.
[5]
Pieralisi FJ, Rodrigues MR, Segura VG,et al. Genotypic diversity of Streptococcus mutans in caries-free and caries-active preschool children[J]. Int J Dent,2010(2010):824976.
[6]
Jiang Q, Yu M, Min Z,et al. AP-PCR detection of Streptococcus mutans and Streptococcus sobrinus in caries-free and caries-active subjects[J]. Mol CellBiochem,2012,365(1-2):159-164.
[7]
Igarashi T, Asaga E, Goto N. The sortase of Streptococcus mutans mediates cell wall anchoring of a surface protein antigen[J]. Oral Microbiol Immunol,2003,18(4):266-269.
[8]
Lee SF, Boran TL. Roles of sortase in surface expression of the major protein adhesin P1,saliva-induced aggregation and adherence,and cariogenicityof Streptococcus mutans[J]. Infect Immun,2003,71(2):676-681.
[9]
Yu LX, Tao Y, Qiu RM,et al. Genetic polymorphisms of the sortase A gene and social-behavioural factors associated with caries in children:a case-control study[J]. BMC Oral Health,2015(15):54.
[10]
Kim Seow W. Environmental,maternal,and child factors which contribute to early childhood caries:a unifying conceptual model[J]. Int J Paediatr Dent,2012,22(3):157-168.
[11]
Gold OG, Jordan HV, Van Houte J. A selective medium for Streptococcus mutans[J]. Arch Oral Biol,1973,18(11):1357-1364.
[12]
Shklair IL, Keene HJ. A biochemical scheme for the separation of the five varieties of Streptococcus mutans[J]. Arch Oral Biol,1974,19(11):1079-1081.
[13]
Sato T, Hu JP, Ohki K,et al. Identification of mutans streptococci by restriction fragment length polymorphism analysis of polymerase chain reaction-amplified 16S ribosomal RNA genes[J]. Oral Microbiol Immunol,2003,18(5):323-326.
[14]
Truong TL, Ménard C, Mouton C,et al. Identification of mutans and other oral streptococci by random amplified polymorphic DNA analysis[J]. J Med Microbiol,2000,49(1):63-71.
[15]
Ronaghi M, Elahi E. Pyrosequencing for microbial typing[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2002,782(1-2):67-72.
[16]
Zhou Q, Qin X, Qin M,et al. Genotypic diversity of Streptococcus mutans and Streptococcus sobrinus in 3-4-year-old children with severe caries or without caries[J]. Int J Paediatr Dent,2011,21(6):422-431.
[17]
Zhao W, Li W, Lin J,et al. Effect of sucrose concentration on sucrose-dependent adhesion and glucosyltransferase expression of S.mutans in children with severe early-childhood caries(S-ECC)[J]. Nutrients,2014,6(9):3572-3586.
[18]
Kamiya RU, Napimoga MH, Höfling JF,et al. Frequency of four different mutacin genes in Streptococcus mutans genotypes isolated from caries-free and caries-active individuals[J]. Oral Microbiol Immunol,2005,54(Pt 6):599-604.
[19]
Lee SF, McGavin MK. Identification of a point mutation resulting in loss of cell wall anchoring activity of SrtA of Streptococcus mutans NG5[J]. Infect Immun,2004,72(7):4314-4317.
[20]
Ng MW, Chase I. Early childhood caries:risk-based disease prevention and management[J]. Dent Clin North Am,2013,57(1):1-16.
[21]
dos Santos Junior VE, de Sousa RM, Oliveira MC,et al. Early childhood caries and its relationship with perinatal,socioeconomic and nutritional risks:a cross-sectional study[J]. BMC Oral Health,2014(14):47.
[22]
Zhou Y, Yang JY, Zhi QH,et al. Factors associated with colonization of Streptococcus mutans in 8- to 32-month-old children:a cohort study[J]. Aust Dent J,2013,58(4):507-513.
[23]
Kato T, Yorifuji T, Yamakawa M,et al. Association of breast feeding with early childhood dental caries:Japanese population-based study[J]. BMJ Open,2015,5(3):e006982.
[24]
Vachirarojpisan T, Shinada K, Kawaguchi Y,et al. Early childhood caries in children aged 6-19 months[J]. Community Dent Oral Epide miol,2004,3(2):133-142.
[1] 骞佩, 包瑛, 黄惠梅, 韩艳, 索磊, 杨楠, 安小敏, 党佳文. 常染色体隐性遗传多囊肾病患儿PKHD1基因变异的临床表型及基因型[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 540-547.
[2] 王立芳, 潘平山, 蒙达华, 林丽, 左杨谨, 丘小霞. 广西地区440例血红蛋白H病胎儿产前诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(01): 75-80.
[3] 李维, 莫俊俏. 儿童呼吸道耐药流感嗜血杆菌基因型鉴定及耐药分析对抗菌药物治疗选择的意义[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 315-323.
[4] 郑璇, 张宝, 李世龙, 张晓茹. 150例不同基因型慢性乙型肝炎患者逆转录聚合酶区耐药变异位点特征及耐药影响因素[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(02): 82-89.
[5] 姚立农, 陆群英, 阮卫, 占喆, 朱水荣, 姜理平. 五例恙虫病东方体感染基因型及其基因变异[J]. 中华实验和临床感染病杂志(电子版), 2020, 14(02): 110-116.
[6] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[7] 刘传瑾, 李伶, 王园红, 陈永洁, 覃子芸, 邱荣敏. 父母外出务工对玉林市玉州区留守儿童口腔健康相关指标的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 180-187.
[8] 庞亮月, 林焕彩. 人工智能在龋病诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 162-166.
[9] 廖莹, 邢向辉. 南京市视力障碍儿童患龋状况、龋活跃性和口腔卫生习惯调查及相关性分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 222-227.
[10] 孟新慧, 霍丽珺, 雷雅燕. 牙菌斑pH值的动态变化及检测技术的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(01): 54-57.
[11] 刘东晓, 丁永斌, 单留群, 程功名. 酪氨酸蛋白激酶-2 rs2230724基因多态性与结直肠癌风险相关性研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(06): 667-671.
[12] 隋文, 马瑞雪, 雷期音, 马婧, 高文丽, 蔡帼娴, 洪咏龙. 儿科医师对儿童口腔龋病知识了解程度的调查研究[J]. 中华临床医师杂志(电子版), 2020, 14(04): 255-260.
[13] 余婷婷, 普冬, 李冬玲, 王红英, 张润武, 丁彩梅, 李丽华, 白经, 李晓非. 昆明地区乙肝相关肝细胞癌患者基因型和PIVKA-Ⅱ水平分析[J]. 中华临床实验室管理电子杂志, 2020, 08(03): 166-169.
[14] 孔倩, 白冠男, 周瑜, 闫波. 组织蛋白酶B基因启动子多态性与急性心肌梗死发病的关系[J]. 中华诊断学电子杂志, 2022, 10(03): 171-176.
[15] 鞠爱萍, 刘艳霞, 林铿, 孟祥荣, 李熹翀, 魏国祥, 刘淑贤. 广州北部地区αβ复合型地中海贫血基因型和血液学特征[J]. 中华诊断学电子杂志, 2020, 08(02): 121-125.
阅读次数
全文


摘要