切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 162 -166. doi: 10.3877/cma.j.issn.1674-1366.2023.03.002

所属专题: 总编推荐 口腔医学

预防口腔医学专栏·专家论坛

人工智能在龋病诊疗中的应用
庞亮月1, 林焕彩1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2023-04-15 出版日期:2023-02-21
  • 通信作者: 林焕彩

Application of artificial intelligence in the field of dental caries

Liangyue Pang1, Huancai Lin1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2023-04-15 Published:2023-02-21
  • Corresponding author: Huancai Lin
  • Supported by:
    National Natural Science Foundation of China(Young Scientist Fund 81903345)
引用本文:

庞亮月, 林焕彩. 人工智能在龋病诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(03): 162-166.

Liangyue Pang, Huancai Lin. Application of artificial intelligence in the field of dental caries[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(03): 162-166.

龋病患病率居高不下,疾病负担严重,防控形势严峻。近年来人工智能(AI)在医学领域得到了飞速的发展,其强大的图像识别技术为龋病的诊断及风险评估提供了新思路,为进一步实现龋病个体化的精准防控提供了契机。本文将从AI在龋病诊断、风险预测等方面的研究进展进行回顾和展望。

The prevalence of dental caries remains high, posing a serious disease burden and a challenging situation for prevention and control. Recent advances in artificial intelligence (AI) have significantly impacted the medical field, particularly through the application of powerful image recognition technology. These advancements have provided new opportunities for developing more accurate diagnostic and risk assessment for caries, thereby enabling more nuanced and effective precision medicine. In this article, the role of AI in the diagnosis and risk prediction of caries, its research progress and prospect were discussed.

[1]
GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global,regional,and national incidence,prevalence,and years lived with disability for 328 diseases and injuries for 195 countries,1990-2016:A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet2017,390(10100):1211-1259. DOI:10.1016/S0140-6736(17)32154-2.
[2]
Righolt AJ, Jevdjevic M, Marcenes W,et al. Global-,regional-,and country-level economic impacts of dental diseases in 2015[J]. J Dent Res2018,97(5):501-507. DOI:10.1177/0022034517750572.
[3]
Du MQ, Li Z, Jiang H,et al. Dental caries status and its associated factors among 3- to 5-year-old children in China:A national survey[J]. Chin J Dent Res2018,21(3):167-179. DOI:10.3290/j.cjdr.a41076.
[4]
Gao YB, Hu T, Zhou XD,et al. Dental caries in Chinese elderly people:Findings from the 4th national oral health survey[J]. Chin J Dent Res2018,21(3):213-220. DOI:10.3290/j.cjdr.a41077.
[5]
Si Y, Tai BJ, Hu DY,et al. Oral health status of Chinese residents and suggestions for prevention and treatment strategies[J]. Global Health Journal2019,3(2):50-54. DOI:10.1016/j.glohj.2019.06.004.
[6]
Nikitas A, Michalakopoulou K, Njoya TE,et al. Artificial intelligence,transport and the smart city:Definitions and dimensions of a new mobility era[J]. Sustainability2020,12:2789. DOI:10.3390/su12072789.
[7]
Sirsat MS, Fermé E, Câmara J. Machine learning for brain stroke:A review[J]. J Stroke Cerebrovasc Dis2020,29(10):105162. DOI:10.1016/j.jstrokecerebrovasdis.2020.105162.
[8]
刘蓬然,霍彤彤,陆林,等. 人工智能在医学中的应用现状与展望[J]. 中华医学杂志2021,101(44):3677-3683. DOI:10.3760/cma.j.cn112137-20210313-00628.
[9]
梁景平. 龋病早期诊断新技术的研究与应用[J]. 中华口腔医学杂志2021,56(1):33-38. DOI:10.3760/cma.j.cn112144-20201108-00558.
[10]
Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods[J]. J Dent Educ2001,65(10):960-968.
[11]
帕克扎提·色依提,王铁梅,徐子能,等. 基于深度学习在曲面体层图像中人工智能辅助诊断系统初步研究[J]. 口腔医学研究2021,37(9):845-849. DOI:10.13701/j.cnki.kqyxyj.2021.09.016.
[12]
Lee JH, Kim DH, Jeong SN,et al. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm[J]. J Dent2018,77:106-111. DOI:10.1016/j.jdent.2018.07.015.
[13]
Cantu AG, Gehrung S, Krois J,et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning[J]. J Dent2020,100:103425. DOI:10.1016/j.jdent.2020.103425.
[14]
de Araujo Faria V, Azimbagirad M, Arruda GV,et al. Prediction of radiation-related dental caries through PyRadiomics features and artificial neural network on panoramic radiography[J]. J Digit Imaging2021,34(5):1237-1248. DOI:10.1007/s10278-021-00487-6.
[15]
Mao YC, Chen TY, Chou HS,et al. Caries and restoration detection using bitewing film based on transfer learning with CNNs[J]. Sensors (Basel)2021,21(13):4613. DOI:10.3390/s21134613.
[16]
Bayraktar Y, Ayan E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs[J]. Clin Oral Investig2022,26(1):623-632. DOI:10.1007/s00784-021-04040-1.
[17]
Duong DL, Nguyen QDN, Tong MS,et al. Proof-of-concept study on an automatic computational system in detecting and classifying occlusal caries lesions from smartphone color images of unrestored extracted teeth[J]. Diagnostics (Basel)2021,11(7):1136. DOI:10.3390/diagnostics11071136.
[18]
Duong DL, Kabir MH, Kuo RF. Automated caries detection with smartphone color photography using machine learning[J]. Health Informatics J2021,27(2):14604582211007530. DOI:10.1177/14604582211007530.
[19]
Kühnisch J, Meyer O, Hesenius M,et al. Caries detection on intraoral images using artificial intelligence[J]. J Dent Res2022,101(2):158-165. DOI:10.1177/00220345211032524.
[20]
Ding B, Zhang Z, Liang Y,et al. Detection of dental caries in oral photographs taken by mobile phones based on the YOLOv3 algorithm[J]. Ann Transl Med2021,9(21):1622. DOI:10.21037/atm-21-4805.
[21]
Liu L, Xu J, Huan Y,et al. A smart dental health-iot platform based on intelligent hardware,deep learning,and mobile terminal[J]. IEEE J Biomed Health Inform2020,24(3):898-906. DOI:10.1109/JBHI.2019.2919916.
[22]
Ghaedi L, Gottlieb R, Sarrett DC,et al. An automated dental caries detection and scoring system for optical images of tooth occlusal surface[J]. Conf Proc IEEE Eng Med Biol Soc2014:1925-1928. DOI:10.1109/EMBC.2014.6943988.
[23]
Jones KA, Jones N, Tenuta LMA,et al. Convolution neural networks and targeted fluorescent nanoparticles to detect and ICDAS score caries[J]. Caries Res2022,56(4):419-428. DOI:10.1159/000527118.
[24]
Casalegno F, Newton T, Daher R,et al. Caries detection with near-infrared transillumination using deep learning[J]. J Dent Res2019,98(11):1227-1233. DOI:10.1177/0022034519871884.
[25]
Rossi JG, Rojas-Perilla N, Krois J,et al. Cost-effectiveness of artificial intelligence as a decision-support system applied to the detection and grading of melanoma,dental caries,and diabetic retinopathy[J]. JAMA Netw Open2022,5(3):e220269. DOI:10.1001/jamanetworkopen.2022.0269.
[26]
Schwendicke F, Mertens S, Cantu AG,et al. Cost-effectiveness of AI for caries detection:Randomized trial[J]. J Dent2022,119:104080. DOI:10.1016/j.jdent.2022.104080.
[27]
Sadegh-Zadeh SA, Qeranqayeh AR, Benkhalifa E,et al. Dental caries risk assessment in children 5 years old and under via machine learning[J]. Dent J (Basel)2022,10(9):164. DOI:10.3390/dj10090164.
[28]
Wang Y, Wang S, Wu CY,et al. Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities[J]. mSystems2019,4(6):e00450-19. DOI:10.1128/mSystems.00450-19.
[29]
Zaorska K, Szczapa T, Borysewicz-Lewicka M,et al. Prediction of early childhood caries based on single nucleotide polymorphisms using neural networks[J]. Genes (Basel)2021,12(4):462. DOI:10.3390/genes12040462.
[30]
Qu X, Zhang C, Houser SH,et al. Prediction model for early childhood caries risk based on behavioral determinants using a machine learning algorithm[J]. Comput Methods Programs Biomed2022,227:107221. DOI:10.1016/j.cmpb.2022.107221.
[31]
Pang L, Wang K, Tao Y,et al. A new model for caries risk prediction in teenagers using a machine learning algorithm based on environmental and genetic factors[J]. Front Genet2021,12:636867. DOI:10.3389/fgene.2021.636867.
[32]
Liu L, Wu W, Zhang SY,et al. Dental caries prediction based on a survey of the oral health epidemiology among the geriatric residents of Liaoning,China[J]. Biomed Res Int2020,2020:5348730. DOI:10.1155/2020/5348730.
[33]
Njimbouom SN, Lee K, Kim JD. MMDCP:Multi-modal dental caries prediction for decision support system using deep learning[J]. Int J Environ Res Public Health2022,19(17):10928. DOI:10.3390/ijerph191710928.
[34]
Hur SH, Lee EY, Kim MK,et al. Machine learning to predict distal caries in mandibular second molars associated with impacted third molars[J]. Sci Rep2021,11(1):15447. DOI:10.1038/s41598-021-95024-4.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J/OL]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[4] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[5] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[6] 叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.
[7] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[8] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[9] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[10] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[11] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[12] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[13] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?