[1] |
Ralhan R, Desouza LV, Matta A, et al. iTRAQ-multidimensional liquid chromatography and tandem mass spectrometry-based identification of potential biomarkers of oral epithelial dysplasia and novel networks between inflammation and premalignancy[J]. J Proteome Res, 2009, 8(1): 300-309.
|
[2] |
Lee CH, Chang JS, Syu SH, et al. IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer[J]. J Cell Physiol, 2015, 230(4): 875-884.
|
[3] |
Voronov E, Reich E, Dotan S, et al. Effects of IL-1 mole-cules on growth patterns of 3-MCA-induced cell lines: an inter-play between immunogenicity and invasive potential[J]. J Immunotoxicol, 2010, 7(1): 27-38.
|
[4] |
Kim GY, Lee JW, Ryu HC, et al. Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis[J]. J Immunol, 2010, 184(7): 3946-3954.
|
[5] |
Merry HE, Phelan P, Doaks M, et al. Functional roles of tumor necrosis factor-alpha and interleukin 1-Beta in hypoxia and reoxygenation[J]. Ann Thorac Surg, 2015, 99(4): 1200-1205.
|
[6] |
Lewis AM, Varghese S, Xu H, et al. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment[J]. J Transl Med, 2006(4): 48.
|
[7] |
Puig-Vilanova E, Rodriguez DA, Lioreta J, et al. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer[J]. Free Radic Biol Med, 2015(79): 91-108.
|
[8] |
Huang M, Wang J, Lee P, et al. Human non-small cell lung cancer cells express a type 2 cytokine pattern[J]. Cancer Res, 1995, 55(17): 3847-3853.
|
[9] |
Watari K, Shibata T, Kawahara A, et al. Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages[J]. PLoS One, 2014, 9(6): e99568.
|
[10] |
Johnson NW, Jayasekara P, Amarasinghe AA. Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology[J]. Periodontol 2000, 2011, 57(1): 19-37.
|
[11] |
Kumar A, Pant MC, Singh HS, et al. Determinants of oxidative stress and DNA damage(8-OhdG)in squamous cell carcinoma of head and neck[J]. Indian J Cancer, 2012, 49(3): 309-315.
|
[12] |
Czesnikiewicz-Guzik M, Lorkowska B, Zapala J, et al. NADPH oxidase and uncoupled nitric oxide synthase are major sources of reactive oxygen species in oral squamous cell carcinoma. Potential implications for immune regulation in high oxidative stress conditions[J]. J Physiol Pharmacol, 2008, 59(1): 139-152.
|
[13] |
Dequanter D, Van de Velde M, Nuyens V, et al. Assessment of oxidative stress in tumors and histologically normal mucosa from patients with head and neck squamous cell carcinoma: a preliminary study[J]. Eur J Cancer Prev, 2013, 22(6): 558-560.
|
[14] |
Miura Y, Kozuki Y, Yagasaki K. Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor[J]. Biochem Biophys Res Commun, 2003, 305(1): 160-165.
|
[15] |
Apte RN, Krelin Y, Song X, et al. Effects of micro-environment - and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions[J]. Eur J Cancer, 2006, 42(6): 751-759.
|
[16] |
Muqbil I, Beck FW, Bao B, et al. Old wine in a new bottle: the Warburg effect and anticancer mechanisms of resveratrol[J]. Curr Pharm Des, 2012, 18(12): 1645-1654.
|
[17] |
Sung HJ, Ma W, Starost MF, et al. Ambient oxygen promotes tumorigenesis[J]. PLoS One, 2011, 6(5): e19785.
|
[18] |
Kuykendall A, Chiappori A. Advanced EGFR mutation-positive non-small-cell lung cancer: case report, literature review, and treatment recommendations[J]. Cancer Control, 2014, 21(1): 67-73.
|
[19] |
Dorsey JF, Kao GD, MacArthur KM, et al. Tracking viable circulating tumor cells(CTCs)in the peripheral blood of non-small cell lung cancer(NSCLC)patients undergoing definitive radiation therapy: pilot study results[J]. Cancer, 2015, 121(1): 139-149.
|
[20] |
Fleury C, Mignotte B, Vayssière JL. Mitchondrial reactive oxygen species in cell death signaling[J]. Biochimie, 2002, 84(2-3): 131-141.
|
[21] |
Sohal RS, Arnold L, Orr WC. Effect of age on superoxide dismutase, catalase, glutathione reductase, inorganic peroxides, TBA-reactive material, GSH/GSSG, NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster[J]. Mech Ageing Dev, 1990, 56(3): 223-235.
|
[22] |
Cheng CY, Kuo CT, Lin CC, et al. IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells[J]. Br J Pharmacol, 2010, 160(7): 1595-1610.
|
[23] |
Petrella BL, Armstrong DA, Vincenti MP. Interleukin-1 beta and transforming growth factor-beta 3 cooperate to activate matrix metalloproteinase expression and invasiveness in A549 lung adenocarcinoma cells[J]. Cancer Lett, 2012, 325(2): 220-226.
|