切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (02) : 97 -103. doi: 10.3877/cma.j.issn.1674-1366.2016.02.004

所属专题: 文献

基础研究

兔牙髓干细胞与Pluronic F-127嵌段共聚物的体外相容性
帕尔哈提·阿布肚热合曼1, 白尔娜·吾守尔1, 木合塔尔·霍加1,(), 刘晓文1   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院口腔科
  • 收稿日期:2016-01-19 出版日期:2016-04-01
  • 通信作者: 木合塔尔·霍加
  • 基金资助:
    国家自然科学基金(地区科学基金项目,81560180)

Biocompatibility of dental pulp progenitor cells and Pluronic F-127 hydrogel

Abudureheman Paerhati.1, Wushouer Baierna.1, Huojia Muhetaer.1,(), Xiaowen Liu1   

  1. 1. Department of Stomatology, People′s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2016-01-19 Published:2016-04-01
  • Corresponding author: Huojia Muhetaer.
  • About author:
    Corresponding author: Muhetaer.Huojia, Email:
引用本文:

帕尔哈提·阿布肚热合曼, 白尔娜·吾守尔, 木合塔尔·霍加, 刘晓文. 兔牙髓干细胞与Pluronic F-127嵌段共聚物的体外相容性[J]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 97-103.

Abudureheman Paerhati., Wushouer Baierna., Huojia Muhetaer., Xiaowen Liu. Biocompatibility of dental pulp progenitor cells and Pluronic F-127 hydrogel[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(02): 97-103.

目的

探讨牙髓干细胞(DPSC)与Pluronic F-127水凝胶生物相容性。

方法

酶解组织块法获得DPSC,镜下观察细胞形态。制备20%、25%、30%(w/v)的Pluronic F-127水凝胶,扫描电镜(SEM)观察水凝胶支架空间形态,检测支架材料的溶胀率,凝胶化时间。用不同浓度Pluronic F-127水凝胶包封DPSC进行三维培养,并以普通培养皿的二维培养作为对照,镜下观察细胞生长情况。培养第1、3、5、7天通过噻唑蓝(MTT)法检测支架对DPSC增殖的影响。将最佳浓度的Pluronic F-127用于包封DPSC,常规矿化液诱导14 d进行茜素红、甲苯胺蓝染色、实时荧光定量聚合酶链反应(PCR)检测成骨相关骨桥蛋白(OPN)、Ⅱ型胶原,以评价Pluronic F-127对DPSC成骨及成软骨分化的影响。数据分析采用单因素方差分析。

结果

成功分离并纯化DPSC,细胞在支架内生长良好;MTT结果显示:第1天各组间差异无统计学意义;第3天,20% Pluronic F-127组细胞增殖A标准值(0.774 ± 0.095)显著高于其他培养组(A对照= 0.353 ± 0.096、A25% PF= 0.559 ± 0.053、A30% PF= 0.532 ± 0.093),差异有统计学意义(F= 15.993,P= 0.000);第5天时,20% Pluronic F-127组细胞增殖A标准值(0.554 ± 0.510)显著高于其他培养组(A对照= 0.260 ± 0.097、A25% PF= 0.353 ± 0.049、A30% PF= 0.212 ± 0.049),差异有统计学意义(F= 20.821,P= 0.000)。成骨及成软骨诱导后茜素红及甲苯胺蓝染色呈阳性,对照组呈阴性。实时荧光定量PCR显示,三维诱导组mRNA相对表达水平显著高于其他培养组,差异有统计学意义(FOPN= 65.576,POPN= 0.000;FCOL-2= 38.382,PCOL-2= 0.000)。

结论

20% Pluronic F-127适合DPSC的培养,并可支持其生长及分化。Pluronic F-127可作为DPSC的生物载体,有望成为理想的组织工程支架材料。

Objective

To assess the biocompatibility of nonionic triblock copolymer Pluronic F-127 with dental pulp stem cells (DPSCs) .

Methods

DPSCs were harvested with enzymatic digestion method. Following the preparation of 20%, 25%, 30% (w/v) Pluronic F-127, Scanning electron microscopy (SEM) was utilized to observe the structure of the hydrogel, and swelling kinetics and gelling properties were examined. After the encapsulation of cells of third passage in Pluronic F-127, MTT tests were performed to asses the effect of hydrogels on the proliferation of DPSCs on the 1, 3, 5, 7th day of incubation. On day 14, Osteogenic and chondrogenic differentiation ability of DPSCs encapsulated in the hydrogel were estimated by means of alizarin red S, toluidine blue staining, Real-time q-PCR. Data were analyzed using one-way ANOVA procedure.

Results

DPSCs were isolated and encapsulated in the hydrogel scaffold successfully, MTT test shows that There was no significant difference of cell proliferation in the 1st day. 20% PF group (0.774 ± 0.095) enhanced cell proliferation significantly higher than other groups (Acontrol= 0.353 ± 0.096, A25% PF= 0.559 ± 0.053, A30% PF= 0.532 ± 0.093) in the 3rd day (F= 15.993, P= 0.000) , in the 5th day, 20% PF group (0.554 ± 0.510) also significantly enhanced cell proliferation than other groups (Acontrol= 0.260 ± 0.097, A25% PF= 0.353 ± 0.049, A30% PF= 0.212 ± 0.049; F= 20.821, P= 0.000) . Alizarin Red S and toluidine staining showed positive results. RT-qPCR shows that the relative expression of osteoblast and chondroid markers were increased compared to the control and 2D induction groups (FOPN=65.576, POPN= 0.000; FCOL-2= 38.382, PCOL-2= 0.000) .

Conclusion

Pluronic F-127 of 20% (w/v) could be a promising cell carrier material for bone and cartilage tissue engineering.

表1 荧光定量PCR引物序列
图1 原代牙髓干细胞培养及水凝胶性质
表2 不同浓度水凝胶溶液初始成胶温度、成凝胶时间
图2 不同浓度水凝胶SEM图及水凝胶对牙髓干细胞的影响
图3 不同浓度Plutonic F-127包封的牙髓干细胞在第1、3、5、7天的A
图4 不同浓度水凝胶支架材料对牙髓干细胞增殖的比较
图5 水凝胶对牙髓干细胞成骨及成软骨表达的影响
[1]
Posnick JC, Gray JA. Is it safe to re-harvest the anterior iliac crest to manage Le FortⅠ interpositional defects in young adults with a repaired cleft[J]. J Oral Maxillofac Surg,2015,73(12 Suppl):S32-S39.
[2]
Hoffman AS. Hydrogels for biomedical applications[J]. Adv Drug Deliv Rev,2002,54(1):3-12.
[3]
Gronthos S, Arthur A, Bartold PM,et al. A method to isolate and culture expand human dental pulp stem cells[J]. Methods Mol Biol,2011(698):107-121.
[4]
买布拜木·买买提依明,木合塔尔·霍加,吴中明,等.戊巴比妥钠联合利多卡因麻醉在家兔引导骨组织再生实验中应用[J].中华实用诊断与治疗杂志,2015,29(10):974-975.
[5]
Huojia M, Wu Z, Zhang X. Effect of dental pulp stem cells (DPSCs)in repairing rabbit alveolar bone defect[J]. Clin Lab,2015,61(11):1703-1708.
[6]
Erickson CA, Reedy MV. Neural crest development:the interplay between morphogenesis and cell differentiation[J]. Curr Top Dev Biol,1998(40):177-209.
[7]
Makino Y, Yamaza H, Akiyama K,et al. Immune therapeutic potential of stem cells from human supernumerary teeth[J]. J Dent Res,2013,92(7):609-615.
[8]
Yildirim S, Zibandeh N, Genc D,et al. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth,dental pulp,and dental follicles[J/OL]. Stem Cells Int,2016[2015-12-06]. published online ahead of print March 25,2016].

URL    
[9]
Lee JH, Baek HR, Lee KM,et al. The effect of poloxamer 407-based hydrogel on the osteoinductivity of demineralized bone matrix[J]. Clin Orthop Surg,2014,6(4):455-461.
[10]
Lippens E, Vertenten G, Gironès J,et al. Evaluation of bone regeneration with an injectable,in situ polymerizable Pluronic F127 hydrogel derivative combined with autologous mesenchymal stem cells in a goat tibia defect model[J]. Tissue Eng Part A,2010,16(2):617-627.
[11]
Kim BC, Bae H, Kwon IK,et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine[J]. Tissue Eng Part B Rev,2012,18(3):235-244.
[12]
Phillips MD, Kuznetsov SA, Cherman N,et al. Directed differentiation of human induced pluripotent stem cells toward bone and cartilage:in vitro versus in vivo assays[J]. Stem Cells Transl Med,2014,3(7):867-878.
[13]
Jung UW, Lee IK, Park JY,et al. The efficacy of BMP-2 preloaded on bone substitute or hydrogel for bone regeneration at peri-implant defects in dogs[J]. Clin Oral Implants Res,2015,26(12):1456-1465.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[5] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[6] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[7] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[10] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[11] 冯欢, 杨凤霞, 许静, 黄婧琼, 刘晓青, 陈艳, 褚玲玲. 胸腹部创面愈合的研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 840-842.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[15] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
阅读次数
全文


摘要