切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2016, Vol. 10 ›› Issue (02) : 92 -96. doi: 10.3877/cma.j.issn.1674-1366.2016.02.003

所属专题: 文献

基础研究

饥饿状态下白色念珠菌差异表达基因的研究
宁杨1, 杜宇1, 凌均棨1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2015-11-04 出版日期:2016-04-01
  • 通信作者: 凌均棨
  • 基金资助:
    国家自然科学基金(青年科学基金项目81500838); 广东省医学科学技术研究基金(B2013154); 中山大学教学改革研究项目(52000-16310041)

Differentially expressed genes of Candida albicans under starvation conditions

Yang Ning1, Yu Du1, Junqi Ling1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2015-11-04 Published:2016-04-01
  • Corresponding author: Junqi Ling
  • About author:
    Corresponding author: Ling Junqi, Email:
引用本文:

宁杨, 杜宇, 凌均棨. 饥饿状态下白色念珠菌差异表达基因的研究[J]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 92-96.

Yang Ning, Yu Du, Junqi Ling. Differentially expressed genes of Candida albicans under starvation conditions[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2016, 10(02): 92-96.

目的

探讨白色念珠菌饥饿状态的形成机制及差异表达基因。

方法

将白色念珠菌(ATCC 10231)诱导进入厌氧饥饿状态,收集进入饥饿状态0、12、24和48 h的白色念珠菌,提取总RNA后采用全基因组表达谱芯片技术分析基因的差异表达。采用t检验对不同时间点的基因表达状况进行统计分析。

结果

统计分析显示,白色念珠菌诱导进入饥饿状态过程中,14.45%~ 29.13%的基因表达发生改变(P<0.05),涉及氨基酸代谢、糖代谢、脂类代谢、核酸代谢和细胞周期等多个通路。上述通路中丙氨酸合成通路、ATP合成基因SDH4、有丝分裂相关基因PRE1以及胞外基质分泌相关基因GCA1等表达降低,RAX2、VPS34等耐药相关基因表达升高。

结论

白色念珠菌在诱导进入饥饿状态过程中涉及代谢和增殖水平的基因表达下降,对外界刺激和药物耐受相关基因表达上调,此类改变有助于保持白色念珠菌在饥饿状态的存活力和致病性。

Objective

To explore the gene expression during induction and formation of starvation state of Candida albicans (C.albicans) .

Methods

C.albicans American Type Culture Collection (ATCC) 10231 was cultured and induced into starvation phase. After induction for 0, 12, 24, and 48 h, the fungal cells were collected. Total RNA was extracted and microarrays were used to identify the gene expression changes under starvation conditions. T-test was used to statistically analyze the data of different time points.

Results

Statistical analysis demonstrated that 14.45% to 29.13% of gene expression has changed during the induction into starvation conditions (P<0.05) , these genes are related with many biologic pathways including amino acid metabolism, carbohydrate metabolism, lipid metabolism, nucleic acid metabolism and cell cycles. Especially, the differentially expressed genes included the down-regulation of alanine metabolism related genes, ATP synthesis related gene SDH4, mitosis related gene PRE1, and exopolymeric matrix production gene GCA1, and up-regulation of PXA2 and VPS34.

Conclusions

During the induction into starvation conditions, the genes related with metabolic and proliferative activities were down-regulated, while the genes related with environment and drug resistance were up-regulated. These changes may be contributed to maintain the survival and pathogenic capabilities of C.albicans under starvation conditions.

图1 白色念珠菌诱导进入饥饿状态过程中差异表达基因的火山图分析
[1]
Goldfein J, Speirs C, Finkelman M,et al. Rubber dam use during post placement influences the success of root canal-treated teeth[J]. J Endod,2013,39(12):1481-1484.
[2]
Liu H, Wei X, Ling J,et al. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite[J]. J Endod,2010,36(4):630-635.
[3]
Siqueira JF Jr, Rôças IN. Diversity of endodontic microbiota revisited[J]. J Dent Res,2009,88(11):969-981.
[4]
Ning Y, Hu X, Ling J,et al. Candida albicans survival and biofilm formation under starvation conditions[J]. Int Endod J,2013,46(1):62-70.
[5]
Ogasawara A, Odahara K, Toume M,et al. Change in the respiration system of Candida albicans in the lag and log growth phase[J]. Biol Pharm Bull,2006,29(3):448-450.
[6]
Leach MD, Stead DA, Argo E,et al. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance,metabolic adaptation,morphogenetic regulation and virulence of Candida albicans[J]. Mol Microbiol,2011,79(6):1574-1593.
[7]
Watanabe T, Ogasawara A, Mikami T,et al. Hyphal formation of Candida albicans is controlled by electron transfer system[J]. Biochem Biophys Res Commun,2006,348(1):206-211.
[8]
Sturtevant J, Dixon F, Wadsworth E,et al. Identification and cloning of GCA1,a gene that encodes a cell surface glucoamylase from Candida albicans[J]. Med Mycol,1999,37(5):357-366.
[9]
Nobile CJ, Nett JE, Hernday AD,et al. Biofilm matrix regulation by Candida albicans Zap1[J]. PLoS Biol,2009,7(6):e1000133.
[10]
Singh P, Chauhan N, Ghosh A,et al. SKN7 of Candida albicans:mutant construction and phenotype analysis[J]. Infect Immun,2004,72(4):2390-2394.
[11]
Higgins CF. ABC transporters:physiology,structure and mechanism—an overview[J]. Res Microbiol,2001,152(3-4):205-210.
[12]
Higgins CF, Linton KJ. The ATP switch model for ABC transporters[J]. Nat Struct Mol Biol,2004,11(10):918-926.
[13]
St Georgiev V. Membrane transporters and antifungal drug resistance[J]. Curr Drug Targets,2000,1(3):261-284.
[14]
Chen LM, Xu YH, Zhou CL,et al. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations[J]. J Int Med Res,2010,38(2):536-545.
[15]
Prasad R, Sharma M, Rawal MK. Functionally Relevant Residues of Cdr1p:A Multidrug ABC Transporter of Human Pathogenic Candida albicans[J]. J Amino Acids,2011(2011):531412.
[16]
Jezewski S, von der Heide M, Poltermann S,et al. Role of the Vps34p-interacting protein Ade5,7p in hyphal growth and virulence of Candida albicans[J]. Microbiology,2007,153(Pt7):2351-2362.
[17]
Günther J, Nguyen M, Härtl A,et al. Generation and functional in vivo characterization of a lipid kinase defective phosphatidylinositol 3-kinase Vps34p of Candida albicans[J]. Microbiology,2005,151(Pt1):81-89.
[18]
Kitanovic A, Nguyen M, Vogl G,et al. Phosphatidylinositol 3-kinase VPS34 of Candida albicans is involved in filamentous growth,secretion of aspartic proteases,and intracellular detoxification[J]. FEMS Yeast Res,2005,5(4-5):431-439.
[19]
Murciano C, Moyes DL, Runglall M,et al. Evaluation of the role of Candida albicans agglutinin-like sequence(Als)proteins in human oral epithelial cell interactions[J]. PLoS One,2012,7(3):e33362.
[20]
Dwivedi P, Thompson A, Xie Z,et al. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion[J]. PLoS One,2011,6(1):e16218.
[1] 李晋辉, 王华, 唐军, 伍金林, 宁刚. 早产儿白色念珠菌深部感染的临床治疗[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(04): 397-402.
[2] 贺国丽, 符生苗. 三种方法检测人乳头瘤病毒的比较[J]. 中华妇幼临床医学杂志(电子版), 2009, 05(06): 577-579.
[3] 孙路萍, 章小缓, 杨锦鸿, 刘杨澜, 欧玉雪, 胡雁. 白色念珠菌烯醇化酶诱导产生中性粒细胞外网[J]. 中华口腔医学研究杂志(电子版), 2018, 12(02): 76-82.
[4] 宋达为, 黄睿, 汤庆超, 马天翼, 罗玥琛, 王贵玉, 王锡山. 利用GEO数据库分析结肠癌中EZH2及其相关基因的表达与意义[J]. 中华结直肠疾病电子杂志, 2016, 05(06): 475-479.
[5] 曾忠, 周静, 陶俊, 赖海斌. 应用基因芯片技术诊断淋巴结核及其耐药性分析[J]. 中华临床医师杂志(电子版), 2020, 14(11): 890-894.
[6] 范晓姗, 严慧, 朱庆义. 基因芯片在军团菌分型检测中的应用[J]. 中华临床实验室管理电子杂志, 2016, 04(02): 82-85.
阅读次数
全文


摘要