切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 76 -82. doi: 10.3877/cma.j.issn.1674-1366.2018.02.002

所属专题: 文献

基础研究

白色念珠菌烯醇化酶诱导产生中性粒细胞外网
孙路萍1, 章小缓1, 杨锦鸿1, 刘杨澜1, 欧玉雪1, 胡雁1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-12-18 出版日期:2018-04-01
  • 通信作者: 胡雁
  • 基金资助:
    国家自然科学基金(81170969); 广东省医学科学技术研究基金(A2016026)

Recombinant enolase of Candida albicans could induce the formation of neutrophil extracellular traps

Luping Sun1, Xiaohuan Zhang1, Jinhong Yang1, Yanglan Liu1, Yuxue Ou1, Yan Hu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-12-18 Published:2018-04-01
  • Corresponding author: Yan Hu
  • About author:
    Corresponding author:Hu Yan,Email:
引用本文:

孙路萍, 章小缓, 杨锦鸿, 刘杨澜, 欧玉雪, 胡雁. 白色念珠菌烯醇化酶诱导产生中性粒细胞外网[J]. 中华口腔医学研究杂志(电子版), 2018, 12(02): 76-82.

Luping Sun, Xiaohuan Zhang, Jinhong Yang, Yanglan Liu, Yuxue Ou, Yan Hu. Recombinant enolase of Candida albicans could induce the formation of neutrophil extracellular traps[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(02): 76-82.

目的

通过重组白色念珠菌烯醇化酶(enolase),研究其对人中性粒细胞的作用。

方法

采用分子克隆法,构建质粒、克隆、表达、纯化白色念珠菌重组enolase,密度梯度离心法提取人中性粒细胞,通过2,7-二氯二氢荧光素二醋酸酯(DCFH-DA)法、Sytox green染色和免疫荧光观察白色念珠菌重组enolase(500 nmol/L)对人中性粒细胞的刺激作用。中性粒细胞加入白色念珠菌SC5314(中性粒细胞∶白色念珠菌= 5∶1)作为阳性对照组(SC5314组),未加刺激的作为阴性对照组。采用单因素方差分析(One-Way ANOVA)及Tukey′s检验对数据进行统计分析。

结果

成功得到重组enolase,分子量为46 kDa。重组enolase可以刺激人中性粒细胞产生细胞内活性氧(ROS),enolase组与SC5314组产生ROS的量均无明显差异。Sytox green对胞外DNA定量及免疫荧光观察,均显示重组enolase可以刺激人中性粒细胞产生中性粒细胞外网(NETs)。NETs定量结果显示,enolase组[(11.0 ± 2.5)%]与SC5314组[(12.4 ± 2.0)%]在2 h时无明显差异(F = 6.13,P = 0.0886),在4 h时enolase组[(22.2 ± 2.0)%]显著低于SC5314组[(31.4 ± 3.1)%],差异有统计学意义(F = 9.745,P = 0.0370)。

结论

白色念珠菌enolase可以诱导人中性粒细胞形成NETs。

Objective

To investigate the effect of enolase of Candida albicans (C.albicans) on human neutrophils.

Methods

Molecular cloning method was applied to plasmids construcion, cloning, expression and recombinant enolase purification, and density gradient centrifugation was used to isolate the human neutrophils. The effects of recombinant enolase on human neutrophils were observed by DCFH-DA method, SYTOX green and immunofluorescence. The positive control (SC5314 group) was neutrophils stimulated by C.albicans SC5314 (neitrophil∶C.albicans = 5∶1) and the negative control was neutrophils without stimulation. One-Way ANOVA and Tukey′s test were applied for statistical analysis.

Results

Recombinant enolase, 46 kDa, was successfully cloned and purified. Recombinant enolase could stimulate neutrophils to produce the intracellular ROS, which has no significant difference compared with those induced by C.albicans SC5314 group at 30, 60 and 120 min. Sytox green quantitative and immunoflu-orescence observation of extracellular DNA showed that recombinant enolase also could induce human neutrophils to form NETs. NETs quantitative results showed that there was no significant difference between SC5314 group[ (12.41 ± 2.00) %] and enolase group[ (11.0 ± 2.5) %] at 2 h (F = 6.13, P= 0.0886) , but enolase group[ (22.2 ± 2.0) %) ]was significant lower than SC5314 group [ (31.4 ± 3.1) %] at 4 h (F = 9.745, P = 0.0370) .

Conclusion

Recombinant enolase of C.albicans could induce human neu-trophils to form NETs.

图1 异丙基-β-D-硫代半乳糖(IPTG)诱导大肠杆菌BL21(DE3)表达重组烯醇化酶(enolase)
图2 镍柱层析法纯化重组烯醇化酶(enolase)
图3 烯醇化酶(enolase)诱导中性粒细胞产生活性氧(ROS)
图4 烯醇化酶(enolase)诱导DNA释放
图5 免疫荧光显微镜观察4 h中性粒细胞外网(NETs)形成(高倍放大)
[1]
Qin Y,Zhang L,Xu Z,et al. Innate immune cell response upon Candida albicans infection[J]. Virulence,2016,7(5):512-526.
[2]
Brown GD. Innate antifungal immunity:the key role of phagocytes[J]. Annu Rev Immunol,2011(29):1-21.
[3]
Kumar V,Sharma A. Neutrophils:Cinderella of innate immune system[J]. Int Immunopharmacol,2010,10(11):1325-1334.
[4]
Segal AW. How neutrophils kill microbes[J]. Annu Rev Immunol,2005(23):197-223.
[5]
Wright HL,Moots RJ,Bucknall RC,et al. Neutrophil function in inflammation and inflammatory diseases[J]. Rheumatology(Oxford),2010,49(9):1618-1631.
[6]
Brinkmann V,Reichard U,Goosmann C,et al. Neutrophil extracellular traps kill bacteria[J]. Science,2004,303(5663):1532-1535.
[7]
Brinkmann V,Zychlinsky A. Neutrophil extracellular traps:is immunity the second function of chromatin?[J]. J Cell Biol,2012,198(5):773-783.
[8]
Urban CF,Reichard U,Brinkmann V,et al. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms[J]. Cell Microbiol,2006,8(4):668-676.
[9]
Gow NA,Hube B. Importance of the Candida albicans cell wall during commensalism and infection[J]. Curr Opin Microbiol,2012,15(4):406-412.
[10]
Hall RA,Gow NA. Mannosylation in Candida albicans:role in cell wall function and immune recognition[J]. Mol Microbiol,2013,90(6):1147-1161.
[11]
Kustrzeba-Wojcicka I,Golczak M. Enolase from Candida albicans--purification and characterization[J]. Comp Biochem Physiol B Biochem Mol Biol,2000,126(1):109-120.
[12]
He ZX,Chen J,Li W,et al. Serological response and diagnostic value of recombinant candida cell wall protein enolase,phospho-glycerate kinase,and β-glucosidase[J]. Front Microbiol,2015(6):920.
[13]
Angiolella L,Facchin M,Stringaro A,et al. Identification of a glucan-associated enolase as a main cell wall protein of Candida albicans and an indirect target of lipopeptide antimycotics[J]. J Infect Dis,1996,173(3):684-690.
[14]
Pitarch A,Díez-Orejas R,Molero G,et al. Analysis of the serologic response to systemic Candida albicans infection in a murine model[J]. Proteomics,2001,1(4):550-559.
[15]
Li Wq,Hu Xc,Zhang X,et al. Immunisation with the glycolytic enzyme enolase confers effective protection against Candida albicans infection in mice[J]. Vaccine,2011,29(33):5526-5533.
[16]
Zhang X,Zhao S,Sun L,et al. Different virulence of candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of DNase[J]. Am J Transl Res,2017,9(1):50-62.
[17]
Montagnoli C,Sandini S,Bacci A,et al. Immunogenicity and protective effect of recombinant enolase of Candida albicans in a murine model of systemic candidiasis[J]. Med Mycol,2004,42(4):319-324.
[18]
Mori Y,Yamaguchi M,Terao Y,et al. α-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps[J]. J Biol Chem,2012,287(13):10472-10481.
[19]
Bergmann S,Wild D,Diekmann O,et al. Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae[J]. Mol Microbiol,2003,49(2):411-423.
[20]
von Köckritz-Blickwede M,Goldmann O,Thulin P,et al. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation[J]. Blood,2008,111(6):3070-3080.
[21]
Bianchi M,Hakkim A,Brinkmann V,et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis[J]. Blood,2009,114(13):2619-2622.
[22]
Behnen M,Leschczyk C,Möller S,et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRⅢB and Mac-1[J]. J Immunol,2014,193(4):1954-1965.
[23]
Keshari RS,Verma A,Barthwal MK,et al. Reactive oxygen species-induced activation of ERK and p38 MAPK mediates PMA-induced NETs release from human neutrophils[J]. J Cell Biochem,2013,114(3):532-540.
[24]
Papayannopoulos V,Metzler KD,Hakkim A,et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol,2010,191(3):677-691.
[1] 王淦楠, 张忠满, 许晓泉, 孙娜娜, 陈旭锋, 张劲松. 成人体外心肺复苏患者神经功能预后相关指标的预测价值研究[J]. 中华危重症医学杂志(电子版), 2022, 15(01): 9-13.
[2] 祝雅, 赵晖, 董莲莲, 金燕. 亚低温治疗对心肺复苏后兔脑组织中基质金属蛋白酶9和神经元特异性烯醇化酶水平及脑复苏的影响[J]. 中华危重症医学杂志(电子版), 2021, 14(05): 374-379.
[3] 向梅, 商丽红, 杜丽娜, 邓孝智, 杜敏. 相关生化指标在儿童炎症性肠病诊断中的价值[J]. 中华妇幼临床医学杂志(电子版), 2018, 14(04): 441-446.
[4] 李晋辉, 王华, 唐军, 伍金林, 宁刚. 早产儿白色念珠菌深部感染的临床治疗[J]. 中华妇幼临床医学杂志(电子版), 2017, 13(04): 397-402.
[5] 庞文箫, 易冬玲, 张朝勇, 蓝英, 曾现芬, 曾义岚, 刘勇. 重症手足口病患儿外周血炎性因子、神经元特异性烯醇化酶与中枢神经特异性S100β蛋白水平变化[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(03): 250-254.
[6] 赵文思, 曾艳峰. 血清神经元特异性烯醇化酶联合CT检查对肺尘病诊断意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 67-69.
[7] 左剑辉, 陈宇, 尹纯同. Cho/Cr比值联合NSE对肺癌脑转移/骨转移的预后意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 39-42.
[8] 龚岚, 罗晓云. CEA、CY211、NSE、Ca125联合诊断肺癌的ROC曲线分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 777-780.
[9] 孙广卫, 唐勇, 司马国忠. NSE、S100B及血流动力学变化在显微外科手术治疗颅内动脉瘤患者的预后分析[J]. 中华神经创伤外科电子杂志, 2019, 05(06): 336-340.
[10] 郭宗培, 张洪钿, 魏希发, 相里昆, 张银善, 赵志英, 马大程. 颅脑损伤患者血清GFAP和NSE的变化与神经功能缺损程度的相关性研究[J]. 中华神经创伤外科电子杂志, 2018, 04(06): 333-336.
[11] 刘泽, 黄忻涛, 赵学明. 开颅血肿清除术与微创钻孔引流术治疗高血压脑出血的对照研究[J]. 中华神经创伤外科电子杂志, 2018, 04(03): 151-156.
[12] 于泽奇, 江继鹏, 董晓煜, 王婧怡. 颅脑创伤后脑脊液S100β、NSE动态变化与颅内压、脑灌注压的关系分析[J]. 中华神经创伤外科电子杂志, 2017, 03(03): 132-135.
[13] 黄富, 刘康峰, 常婉贞, 赵振林, 唐瑜晨, 王国兴, 肖华. 蛛网膜下腔出血患者脑脊液神经元特异性烯醇化酶水平变化及临床意义[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(02): 97-100.
[14] 李秋琼, 薛静, 王敏, 陈芬, 肖美芳. NSE、SIL-2R、TNF-α检测对小儿病毒性脑膜炎与细菌性脑膜炎的诊断价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 303-307.
[15] 孙兵, 丁鸭锁, 尹春, 刘泽昊, 常浩. 血清Netrin-1和NSE对急性缺血性脑卒中早期神经功能恶化及预后的预测价值[J]. 中华临床医师杂志(电子版), 2022, 16(03): 258-263.
阅读次数
全文


摘要