切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 83 -88. doi: 10.3877/cma.j.issn.1674-1366.2018.02.003

所属专题: 文献

基础研究

载银氧化石墨烯对变异链球菌生长及生物膜形成的影响
吴瑞雪1, 杨鑫1, 陈依静1, 符远翔2, 余东升1, 赵玮1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510275 广州,中山大学化学工程与技术学院
  • 收稿日期:2017-10-25 出版日期:2018-04-01
  • 通信作者: 赵玮
  • 基金资助:
    国家自然科学基金(81472526); 广东省科技计划(2016A020215094); 广东省自然科学基金(2014A030313126)

Effect of graphene oxide-silver nanocomposites on Streptococcus mutans proliferation and biofilm formation

Ruixue Wu1, Xin Yang1, Yijing Chen1, Yuanxiang Fu2, Dongsheng Yu1, Wei Zhao1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2017-10-25 Published:2018-04-01
  • Corresponding author: Wei Zhao
  • About author:
    Corresponding author:Zhao Wei,Email:
引用本文:

吴瑞雪, 杨鑫, 陈依静, 符远翔, 余东升, 赵玮. 载银氧化石墨烯对变异链球菌生长及生物膜形成的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(02): 83-88.

Ruixue Wu, Xin Yang, Yijing Chen, Yuanxiang Fu, Dongsheng Yu, Wei Zhao. Effect of graphene oxide-silver nanocomposites on Streptococcus mutans proliferation and biofilm formation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(02): 83-88.

目的

探讨载银氧化石墨烯(GO/Ag)纳米复合物对变异链球菌(S.mutans)生长及生物膜形成的抑制作用。

方法

应用梯度稀释法检测GO/Ag、氧化石墨烯(GO)、纳米银(AgNPs)对变异链球菌的最小抑菌浓度(MIC);菌落形成单位计数法比较GO/Ag、GO、AgNPs对变异链球菌的抑制作用;采用结晶紫染色法和XTT法测定变异链球菌24 h生物膜的生成量和活性;激光共聚焦扫描显微镜(CLSM)观察生物膜形态和计算24 h生物膜的活菌比例。数据以单因素方差分析(One-Way ANOVA)和LSD-t检验进行统计分析。

结果

GO/Ag对变异链球菌的MIC为0.16 mg/mL。0.64 mg/mL GO/Ag对变异链球菌的抑菌率为(82.90 ± 4.87)%,与对照组间的差异有统计学意义(t= 30.804,P<0.001)。而GO和AgNPs材料浓度提升至2.56 mg/mL时,肉眼观察细菌仍未见明显减少。在0.16 mg/mL GO/Ag浓度下,变异链球菌生物膜生成量和活性的减少率分别为(25.12 ± 0.01)%和(38.90 ± 3.42)%,活菌比例为(42.76 ± 19.48)%,与空白对照组间的差异均有统计学意义(t生成量= 7.274,P生成量<0.001;t活性= 7.765,P活性<0.001;t活菌比例= 10.412,P活菌比例<0.001)。

结论

与AgNPs和GO相比,GO/Ag新型纳米复合物对变异链球菌的生长具有较好的抑制作用,并能抑制其生物膜形成。

Objective

To investigate the effect of graphene oxide-silver nanocomposites (GO/Ag) on the proliferation and biofilm formation of Streptococcus mutans (S.mutans) .

Methods

Microdilution method was used to determine the minimum inhibitory concentration (MIC) of graphene oxide (GO) , silver-nanoparticles (AgNPs) , and GO/Ag nanocomposites against the S.mutans. For comparison of antibacterial efficiency of GO, AgNPs and GO/Ag, a colony-forming units counting method was applied. The biomass and the metabolic activities of biofilms with incubation of 24 h were tested by Crystal violet biofilm assay and XTT assay. Confocal laser scanning microscopy (CLSM) was performed to observe and calculate the percentage of live bacteria of S.mutans biofilm. The data were analyzed by One-Way ANOVA and LSD-t test.

Results

The MIC of GO/Ag nanocomposites against S.mutans was found to be 0.16 mg/mL. The bacteriostatic rate of 0.64 mg/mL GO/Ag was (82.90 ± 4.87) % and had significantly difference with the control group (t= 30.804, P<0.001) . In the GO and AgNPs groups, no apparent decrease of S.mutans could be observed, even after raising the concentration up to 2.56 mg/mL. In the 0.16 mg/mL GO/Ag group, reduction rate of biofilm biomass and metabolic activity were (25.12 ± 0.01) % and (38.90 ± 3.42) %, the percentage of live bacteria was (42.76 ± 19.48) %. All of these had significant difference with the blank control group (reduction rate of biofilm biomass: t= 7.274, P<0.001; reduction rate of metabolic activity: t= 7.765, P<0.001; percentage of live bacteria: t= 10.412, P<0.001) .

Conclusions

Comparing with AgNPs and GO, GO/Ag nanocomposites exhibited enhanced inhibition effect on the proliferation and biofilm formation of S.mutans.

图1 不同浓度的氧化石墨烯(GO)、纳米银(AgNPs)、载银氧化石墨烯(GO/Ag)对变异链球菌的抑菌率
表1 不同实验组对变异链球菌24 h生物膜生成量、活性的影响(%, ± s
表2 不同实验组对变异链球菌24 h生物膜活菌比例的影响(%, ± s
图2 变异链球菌24 h生物膜的三维激光共聚焦扫描显微镜图像(荧光染色中倍放大)
[1]
Wu SY,An SS,Hulme J. Current applications of graphene oxide in nanomedicine[J]. Int J Nanomedicine,2015(10 Spec Iss):9-24.
[2]
Bao Q,Zhang D,Qi P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection[J]. J Colloid Interface Sci,2011,360(2):463-470.
[3]
Giusti L,Steinborn C,Steinborn M. Use of silver diamine fluoride for the maintenance of dental prostheses in a high caries-risk pa-tient:A medical management approach[J]. J Prosthet Dent,2017[2017-10-25]. published online ahead of print September 6,2009].

URL    
[4]
Morones JR,Elechiguerra JL,Camacho A,et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology,2005,16(10):2346-2353.
[5]
Tang J,Chen Q,Xu L,et al. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species-specific mechanisms[J]. ACS Appl Mater Interfaces,2013,5(9):3867-3874.
[6]
Peng JM,Lin JC,Chen ZY,et al. Enhanced antimicrobial activities of silver-nanoparticle-decorated reduced graphene nanocomposites against oral pathogens[J]. Mater Sci Eng C Mater Biol Appl,2017(71):10-16.
[7]
Marcano DC,Kosynkin DV,Berlin JM,et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814.
[8]
Cheng L,Weir MD,Zhang K,et al. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium[J]. Dent Mater,2012,28(8):853-862.
[9]
Zhang HZ,Zhang C,Zeng GM,et al. Easily separated silver nanoparticle-decorated magnetic graphene oxide:Synthesis and high antibacterial activity[J]. J Colloid Interface Sci,2016(471):94-102.
[10]
Shao W,Liu X,Min H,et al. Preparation,characterization,and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite[J]. ACS Appl Mater Interfaces,2015,7(12):6966-6973.
[11]
de Moraes AC,Lima BA,de Faria AF,et al. Graphene oxide-silver nanocomposite as a promising biocidal agent against methi-cillin-resistant Staphylococcus aureus[J]. Int J Nanomedicine,2015(10):6847-6861.
[12]
Zhang M,Zhao Y,Yan L,et al. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity[J]. ACS Appl Mater Interfaces,2016,8(13):8834-8840.
[13]
Rachid S,Ohlsen K,Witte W,et al. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis[J]. Antimicrob Agents Chemother,2000,44(12):3357-3363.
[14]
Frank KL,Reichert EJ,Piper KE,et al. In vitro effects of antimi-crobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates[J]. Antimicrob Agents Chemother,2007,51(3):888-895.
[1] 张波, 周潘宇, 邱超, 姜里强, 王斐, 许硕贵. 医用可降解锌合金材料抗菌性能及细胞相容性的体外实验研究[J]. 中华损伤与修复杂志(电子版), 2016, 11(03): 191-197.
[2] 李晓岚, 王肖, 凌均棨, 胡晓莉, 邓动梅. 变异链球菌绿色荧光蛋白报告株在双菌种生物膜研究的应用[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 136-143.
[3] 于丽霞, 庄沛林, 林焕彩. 变异链球菌转肽酶A基因型与乳牙高龋的相关性[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 238-243.
[4] 马可, 高燕, 童忠春, 蒋晓琼, 林冬佳. 不同抛光系统对纳米树脂表面粗糙度和菌斑黏附的影响[J]. 中华口腔医学研究杂志(电子版), 2016, 10(01): 17-21.
[5] 曾荟荟, 凌均棨. 三磷酸腺苷结合盒外排子对变异链球菌毒力因子影响的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 09(03): 247-251.
阅读次数
全文


摘要