切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 89 -95. doi: 10.3877/cma.j.issn.1674-1366.2018.02.004

所属专题: 文献

基础研究

不同电动牙刷对邻面菌斑生物膜的影响
吕晶1, 王肖1, 凌均棨1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-12-22 出版日期:2018-04-01
  • 通信作者: 凌均棨
  • 基金资助:
    中山大学附属口腔医院横向科研项目(001050)

Effect of various power toothbrushes on interproximal biofilm

Jing Lyu1, Xiao Wang1, Junqi Ling1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-12-22 Published:2018-04-01
  • Corresponding author: Junqi Ling
  • About author:
    Corresponding author:Ling Junqi,Email:
引用本文:

吕晶, 王肖, 凌均棨. 不同电动牙刷对邻面菌斑生物膜的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(02): 89-95.

Jing Lyu, Xiao Wang, Junqi Ling. Effect of various power toothbrushes on interproximal biofilm[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(02): 89-95.

目的

研究体外模型中不同运动模式和不同频率的电动牙刷对邻面菌斑生物膜的影响。

方法

培养变异链球菌(S.mutans)、血链球菌(S.sanguis)和内氏放线菌(A.naeslundii)形成三菌种生物膜。实验分为4组,其中3组分别用高频率声波型电动牙刷、振动旋转型电动牙刷和低频率声波型电动牙刷在体外模型中对邻面生物膜进行非接触去除,另1组为对照组,不处理。结晶紫吸附实验半定量计算各组邻面生物膜去除量,激光共聚焦扫描显微镜观察菌斑生物膜,Comstat 2.1软件测量生物膜的总生物量、平均厚度、平均扩散距离。单因素方差分析及LSD-t检验对数据统计分析。

结果

结晶紫吸附实验结果显示,高频率声波型组的生物膜去除量(0.40 ± 0.08)大于振动旋转型组的生物膜去除量(0.24 ± 0.09),差异有统计学意义(t= 4.289,P<0.001),同时也大于低频率声波型组的生物膜去除量(0.24 ± 0.05),差异有统计学意义(t= 4.407,P<0.001)。高频率声波型电动牙刷组的生物膜总生物量[(7.54 ± 1.35)μm3/μm2]小于振动旋转型电动牙刷组[(11.86 ± 1.56)μm3/μm2]和低频率声波型电动牙刷组[(11.84 ± 1.42)μm3/μm2],差异有统计学意义(t振动旋转型组=3.373,P振动旋转型组=0.005;t低频率声波型组= 3.215,P低频率声波型组= 0.007)。高频率声波型电动牙刷组的生物膜平均扩散距离[(0.23 ± 0.02)μm]小于振动旋转型电动牙刷组[(0.76 ± 0.10)μm]和低频率声波型电动牙刷组[(0.71 ± 0.13)μm],差异有统计学意义(t振动旋转型组=2.852,P振动旋转型组= 0.014;t低频率声波型组=2.470,P低频率声波型组= 0.028)。

结论

在体外模型中,相比振动旋转型电动牙刷和低频率声波型电动牙刷,高频率声波型电动牙刷可更高效去除邻面菌斑生物膜,降低生物膜密度。

Objective

To investigate the effect of various power toothbrushes with different action mode and frequency on interproximal biofilm in an in vitro model.

Methods

Streptococcus mutans, Streptococcus sanguis and Actinomyces naeslundii were cultivated to form a three-species biofilm. The tests were divided into four groups, all of which were conducted with non-contact removal by high frequency sonic (HFS) power toothbrush, oscillating-rotating (O-R) power toothbrush and low frequency sonic (LFS) power toothbrush groups and a control group without any treatment in an in vitro model respectively. Interproximal biofilm removal was semi-quantitative calculated by crystal violet staining method. Interproximal biofilm was observed by confocal laser scanning microscope. Biomass, average thickness and average diffusion distance (ADD) were measured by Comstat 2.1 software. Data were analyzed by One-Way ANOVA and LSD-t test.

Results

The result of crystal violet staining method showed that, the biofilm removal of HFS group (0.40 ± 0.08) was greater than the biofilm removal of O-R group (0.24 ± 0.09) , and the difference was statistically significant (t= 4.289, P<0.001) . Moreover, the HFS group also had a greater biofilm removal efficiency than that of LFS group (0.24 ± 0.05) with statistically significant difference (t= 4.407, P<0.001) . Confocal laser scanning microscopy 3D reconstruction images were analyzed by Comstat 2.1 software. Results indicated that the biomass of HFS group (7.54 ± 1.35) μm3/μm2 was less than O-R group (11.86 ± 1.56) μm3/μm2 and LFS group (11.84 ± 1.42) μm3/μm2, and the differences were statistically significant (tO-R group= 3.373, PO-R group= 0.005; tLFS group= 3.215, PLFS group= 0.007) . The ADD of HFS group (0.23 ± 0.02) μm was less than O-R group (0.76 ± 0.10) μm and LFS group (0.71 ± 0.13) μm with statistically significant differences (tO-R group= 2.852, PO-R group= 0.014; tLFS group= 2.470, PLFS group= 0.028) .

Conclusions

In an in vitro model, compared with oscillating-rotating toothbrush and low frequency sonic toothbrush, high frequency sonic power toothbrush could be more effective in removing interproximal biofilm and decreasing biofilm density.

图1 实验用电动牙刷(从左到右:Gevilan、Oral-B、Sonicare)
图2 邻面模型中电动牙刷和生物膜的位置关系模拟图
图3 结晶紫染色法比较各处理组生物膜去除量(aP<0.001)
图4 生物膜激光共聚焦三维重建图(荧光染色中倍放大)
图5 生物膜总生物量Comstat分析结果(aP<0.001,bP<0.05)
图6 生物膜平均厚度Comstat分析结果(aP<0.05)
图7 生物膜平均扩散距离Comstat分析结果(aP<0.05,bP<0.01)
[1]
Axelsson P,Nyström B,Lindhe J. The long-term effect of a plaque control program on tooth mortality,caries and periodontal disease in adults. Results after 30 years of maintenance[J]. J Clin Periodontol,2004,31(9):749-757.
[2]
Ak G,Sepet E,Pinar A,et al. Reasons for early loss of primary molars[J]. Oral Health Prev Dent,2005,3(2):113-117.
[3]
Matuliene G,Studer R,Lang NP,et al. Significance of Periodontal Risk Assessment in the recurrence of periodontitis and tooth loss[J]. J Clin Periodontol,2010,37(2):191-199.
[4]
Shields RC,Burne RA. Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level[J]. Front Microbiol,2016(7):1075.
[5]
Guo L,McLean JS,Lux R,et al. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans[J]. Sci Rep,2015(5):18015.
[6]
Kolenbrander PE,Andersen RN,Blehert DS,et al. Communication among oral bacteria[J]. Microbiol Mol Biol Rev,2002,66(3):486-505.
[7]
Sharma PK,Gibcus MJ,van der Mei HC,et al. Influence of fluid shear and microbubbles on bacterial detachment from a surface[J]. Appl Environ Microbiol,2005,71(7):3668-3673.
[8]
Schmidt JC,Astasov-Frauenhoffer M,Hauser-Gerspach I,et al. Efficacy of various side-to-side toothbrushes for noncontact biofilm removal[J]. Clin Oral Investig,2014,18(3):793-800.
[9]
Schmidt JC,Zaugg C,Weiger R,et al. Brushing without brushing?--a review of the efficacy of powered toothbrushes in noncontact biofilm removal[J]. Clin Oral Investig,2013,17(3):687-709.
[10]
Schmidt JC,Astasov-Frauenhoffer M,Waltimo T,et al. Efficacy of various side-to-side toothbrushes and impact of brushing parameters on noncontact biofilm removal in an interdental space model[J]. Clin Oral Investig,2017,21(5):1565-1577.
[11]
Singleton S,Treloar R,Warren P,et al. Methods for microscopic characterization of oral biofilms:analysis of colonization,microstructure,and molecular transport phenomena[J]. Adv Dent Res,1997,11(1):133-149.
[12]
Parini MR,Eggett DL,Pitt WG. Removal of Streptococcus mutans biofilm by bubbles[J]. J Clin Periodontol,2005,32(11):1151-1156.
[13]
Busscher HJ,Jager D,Finger G,et al. Energy transfer,volumetric expansion,and removal of oral biofilms by non-contact brushing [J]. Eur J Oral Sci,2010,118(2):177-182.
[14]
Roberts FA,Hacker BM,Oswald TK,et al. Evaluation of the use of ultrasound within a power toothbrush to dislodge oral bacteria using an in vitro Streptococcus mutans biofilm model [J]. Am J Dent,2010,23(2):65-69.
[15]
Tawakoli PN,Sauer B,Becker K,et al. Interproximal biofilm removal by intervallic use of a sonic toothbrush compared to an oral irrigation system[J]. BMC Oral Health,2015(15):91.
[16]
van der Mei HC,Rustema-Abbing M,Bruinsma GM,et al.Sequence of oral bacterial co-adhesion and non-contact brushing [J]. J Dent Res,2007,86(5):421-425.
[17]
He Y,Peterson BW,Ren Y,et al. Antimicrobial penetration in a dual-species oral biofilm after noncontact brushing:an in vitro study[J]. Clin Oral Investig,2014,18(4):1103-1109.
[18]
Hope CK,Petrie A,Wilson M. Efficacy of removal of sucrose-supplemented interproximal plaque by electric toothbrushes in an in vitro model[J]. Appl Environ Microbiol,2005,71(2):1114-1116.
[19]
Brambilla E,Cagetti MG,Belluomo G,et al. Effects of sonic energy on monospecific biofilms of cariogenic microorganisms [J]. Am J Dent,2006,19(1):3-6.
[20]
Paramonova E,Kalmykowa OJ,van der Mei HC,et al. Impact of hydrodynamics on oral biofilm strength[J]. J Dent Res,2009,88(10):922-926.
[21]
Verkaik MJ,Busscher HJ,Rustema-Abbing M,et al. Oral biofilm models for mechanical plaque removal[J]. Clin Oral Investig,2010,14(4):403-409.
[22]
Krzyściak W,Jurczak A,Kościelniak D,et al. The virulence of Streptococcus mutans and the ability to form biofilms[J]. Eur J Clin Microbiol Infect Dis,2014,33(4):499-515.
[23]
Adams H,Winston MT,Heersink J,et al. Development of a laboratory model to assess the removal of biofilm from interproximal spaces by powered tooth brushing[J]. Am J Dent,2002(15):12B-17B.
[24]
Hope CK,Petrie A,Wilson M. In vitro assessment of the plaque-removing ability of hydrodynamic shear forces produced beyond the bristles by 2 electric toothbrushes[J]. J Periodontol,2003,74(7):1017-1022.
[1] 吴俊贤, 曾俊杰, 许有银, 苑博. 体外冲击波疗法辅助治疗肩袖修补术后关节僵硬[J]. 中华关节外科杂志(电子版), 2023, 17(04): 571-576.
[2] 邬春虎, 马玉海, 陈长松, 尹华东, 朱晓峰, 何剑星, 刘彧. 冲击波联合富血小板血浆对骨关节炎软骨损伤的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(03): 334-339.
[3] 王玲燕, 邹磊, 洪亮, 宋三兵, 付润, 熊胜男, 宋晓春. 心脏外科术后患者并发低三碘甲状腺原氨酸综合征的影响因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 399-402.
[4] 顾娟, 孙擎擎, 胡方方, 曹义娟, 祁玉娟. 子宫内膜容受性检测改善胚胎反复种植失败患者妊娠结局的临床应用[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 582-587.
[5] 石启蒙, 李罡, 李艳红. 不同牙刷设计对牙刷性能的影响:文献回顾[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 309-314.
[6] 徐慧新, 刘波, 唐立钧. 体外冲击波治疗>1 cm输尿管上段结石失败的预测模型建立[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 506-511.
[7] 李国良, 吴凡, 李浩民, 江俊斌, 郭泽雄, 卓育敏, 马鑫, 赖彩永. 抽栓技术在完全腹腔镜左肾癌合并Ⅳ级腔静脉癌栓取出术的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 403-406.
[8] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[9] 中国医师协会妇产科医师分会妇科单孔腹腔镜全国科研协作组. 妇科单孔腹腔镜手术镜下联合体外操作模式临床应用专家共识[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 200-209.
[10] 崔燕妮, 任颜, 梁凤婷, 覃艳红, 王宏伟. 脐带血源性产品Omidubicel的临床研发进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 178-182.
[11] 徐红莉, 杨钰琳, 薛清, 张茜, 马丽虹, 邱振刚. 体外冲击波治疗非特异性腰痛疗效的系统评价和Meta分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(05): 307-314.
[12] 方可, 笪欢欢, 汪君, 孙瑞祥, 王涛, 李阳, 江海娇, 鲁卫华. ECMO联合肾上腺切除救治妊娠期嗜铬细胞瘤并儿茶酚胺心肌病一例并文献回顾[J]. 中华重症医学电子杂志, 2023, 09(03): 304-310.
[13] 廖家权, 吴波, 唐昌敏. 体外冲击波联合肌电生物反馈对脑卒中后足下垂的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 286-292.
[14] 沈袁恒. 医学检验实验室自建检测方法的现状分析与管理展望[J]. 中华临床实验室管理电子杂志, 2023, 11(04): 200-206.
[15] 高明生, 张盼盼, 包楠迪, 孟繁森, 李婷婷, 徐世平. 一种新型乳链菌素混合物体外杀灭幽门螺杆菌的实验研究[J]. 中华胃肠内镜电子杂志, 2023, 10(04): 258-263.
阅读次数
全文


摘要