切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (03) : 169 -175. doi: 10.3877/cma.j.issn.1674-1366.2018.03.006

所属专题: 文献

临床研究

不同颈部设计种植体在骨愈合期边缘骨变化的临床分析
范毅杰1, 李媛1, 胡晓文1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-11-10 出版日期:2018-06-01
  • 通信作者: 胡晓文

Comparative analysis of peri-implant marginal bone loss around two different implant neck design: a clinical study

Yijie Fan1, Yuan Li1, Xiaowen Hu1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yet-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-11-10 Published:2018-06-01
  • Corresponding author: Xiaowen Hu
  • About author:
    Corresponding author:Hu Xiaowen,Email:
引用本文:

范毅杰, 李媛, 胡晓文. 不同颈部设计种植体在骨愈合期边缘骨变化的临床分析[J]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 169-175.

Yijie Fan, Yuan Li, Xiaowen Hu. Comparative analysis of peri-implant marginal bone loss around two different implant neck design: a clinical study[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(03): 169-175.

目的

探讨口腔种植体在骨愈合过程中,种植体光滑颈部和粗糙颈部设计对边缘骨丧失的影响。

方法

2008年8月至2012年3月,因第一磨牙缺失就诊于中山大学附属口腔医院种植科,接受种植义齿修复患者137例,共151颗种植体纳入研究,通过测量根尖片中种植体周围边缘骨的高度,比较光滑颈部种植体(Replace SelectTM Tapered)和粗糙颈部种植体(XiVETM S)在不同颌位、直径、周期中种植体周围边缘骨的各期累计丧失量和期内丧失量的差异,结果采用SPSS 19.0软件进行统计分析。

结果

在愈合期,粗糙颈部种植体边缘骨丧失量[(0.17 ± 0.01)mm]比光滑颈部种植体[(0.80 ± 0.05)mm]少,差异有统计学意义(F= 94.267,P<0.001);在二期手术至永久修复期,粗糙颈部种植体边缘骨丧失量[(0.59 ± 0.02)mm]比光滑颈部种植体[(0.34 ± 0.01)mm]多,差异有统计学意义(F= 23.651,P<0.001)。边缘骨丧失的各期累计均值,在愈合期与期内丧失量相同,在植入至永久修复期光滑组[(1.14 ± 1.19)mm]少于粗糙组[(0.75 ± 1.12)mm],差异有统计学意义(F= 41.368,P<0.001),不同颌位或不同直径种植体边缘骨丧失的各期累计值均值及各期期内均值差异无统计学意义(P>0.05)。

结论

在愈合期,与光滑颈部相比,粗糙颈部有利于减少愈合期种植体周围边缘骨丧失量;在二期手术至永久修复期,粗糙颈部和光滑颈部种植体边缘骨高度都出现明显降低,但粗糙颈部比光滑颈部种植体边缘骨丧失更多;不同直径和不同颌位种植体对边缘骨丧失无明显影响。

Objective

To investigate the effect of smooth-and rough-neck design of implants on the marginal bone loss during healing period.

Methods

From August 2008 to March 2012, a total of 151 implants (Replace SelectTM Tapered or XiVETM S) were inserted in 137 subjects who visited the Department of Oral Implantology, Affiliated Hospital of Stomatology, Sun Yat-sen University, due to the first molar missing. The mean marginal bone loss (mMBL) of each implant was assessed with digital intraoral periapical radiograph, so that the effect of the two different neck designs above was evaluated, in which such factors as inserting site, diameter of implant and treatment phase were taken into account. The data were analyzed in statistical software (SPSS 19.0) .

Results

In phase 1, the mMBL in the rough-neck group[ (0.17 ± 0.01) mm]was lower than that in the smooth-neck group[ (0.80 ± 0.05) mm; F= 94.267, P<0.001]. In phase 2, on the contrary, the mMBL in the rough-neck group[ (0.59 ± 0.02) mm]was found to be higher than that in the smooth neck-group[ (0.34 ± 0.01) mm; F= 23.651, P<0.001]. From phase 1 to 2, the accumulated mMBL in the smooth neck group[ (1.14 ± 1.19) mm]was lower than that in the rough-neck group[ (0.75 ± 1.12) mm; F= 41.368, P<0.001]. There was no significant difference in mMBL between implants with different diameters or inserting sites (P>0.05) .

Conclusions

In phase 1, implants with a rough-neck design may help maintain the marginal bone level. Nevertheless, the bone level of implants with either a rough-or a smooth-neck design was found to decrease after the placement of abutment. The bone loss around the implants with a rough-neck design was higher than that with a smooth-neck design in phase 2. The change of marginal bone level was not related to the implant diameter, or the inserting site in this study.

表1 光滑颈部与粗糙颈部种植体的颌位、直径及数量分布
图1 种植体边缘骨高度测量示意图
表2 不同颈部种植体边缘骨各期累计丧失均值(mm, ± s
表3 不同颈部种植体边缘骨各期累计丧失均值差(mm, ± s
表4 不同颈部种植体边缘骨各期内丧失均值(mm, ± s
表5 不同颈部种植体边缘骨各期内丧失均值差(mm, ± s
[1]
Albrektsson T,Zarb G,Worthington P,et al. The long-term efficacy of currently used dental implants:a review and proposed criteria of success[J]. Int J Oral Maxillofac Implants,1986,1(1):11-25.
[2]
Qian J,Wennerberg A,Albrektsson T. Reasons for marginal bone loss around oral implants[J]. Clin Implant Dent Relat Res,2012,14(6):792-807.
[3]
Prasad DK,Shetty M,Bansal N,et al. Crestal bone preservation:a review of different approaches for successful implant therapy[J]. Indian J Dent Res,2011,22(2):317-323.
[4]
Oh TJ,Yoon J,Misch E,et al. The causes of early implant bone loss. Myth or science?[J]. J Periodontol,2002,73(3):322-333.
[5]
Bryant SR. The effects of age,jaw site,and bone condition on oral implant outcomes[J]. Int J Prosthodont,1998,11(5):470-490.
[6]
Albrektsson T,Dahlin C,Jemt T,et al. Is marginal bone loss around oral implants the result of a provoked foreign body reaction?[J]. Clin Implant Dent Relat Res,2013,16(2):155-165.
[7]
Shin YK,Han CH,Heo SJ,et al. Radiographic evaluation of marginal bone level around implants with different neck designs after 1 year[J]. Int J Oral Maxillofac Implants,2006,21(5):789-794.
[8]
程亚楠,徐普,朱亚丽,等.三种种植系统周边骨质吸收的对比研究[J].临床口腔医学研究杂志,2011,27(12):742-744.
[9]
den Hartog L,Meijer HJ,Stegenga B,et al. Single implants with different neck designs in the aesthetic zone:a randomized clinical trial[J]. Clin Oral Implants Res,2011,22(11):1289-1297.
[10]
Buser D,Schenk K,Steinemann S,et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs[J]. J Biomed Mater Res,1991,25(7):889-902.
[11]
Berglundh T,Abrahamsson I,Lang NP,et al. De novo alveolar bone formation adjacent to endosseous implants[J]. Clin Oral Implants Res,2003,14(3):251-262.
[12]
Lossdörfer S,Schwartz Z,Wang L,et al. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity[J]. J Biomed Mater Res,2004,70(3):361-369.
[13]
Boyan BD,Lossdörfer S,Wang L,et al. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies[J]. Eur Cell Mater,2003,24(6):22-27.
[14]
Lee DW,Choi YS,Park KH,et al. Effect of microthread on the maintenance of marginal bone level:a 3-year prospective study[J]. Clin Oral Implants Res,2007,18(4):465-470.
[15]
Novaes AB Jr,de Oliveira RR,Taba Júnior M,et al. Crestal bone loss minimized when following the crestal preparation protocol:a histomorphometric study in dogs[J]. J Oral Implantol,2005,31(6):276-282.
[16]
Esposito M,Hirsch JM,Lekholm U,et al. Biological factors contributing to failures of osseointegrated oral implants.(I). Success criteria and epidemiology[J]. Eur J Oral Sci,1998,106(3):527-531.
[17]
Piatelli A,Scarano A,Piatelli M. Microscopical aspects of failure in osseointegrated dental implants:a report of five cases[J]. Biomaterials,1996,17(12):1235-1241.
[18]
Eriksson R,Albrektsson T. The effect of heat on bone regenera-tion:an experimental study in the rabbit using the bone growth chamber[J]. Int J Oral Maxillofac Surg,1984,42(11):705-711.
[19]
Oakley E,Rhyu C,Karatzas S,et al. Formation of the biologic width following crown lengthening in nonhuman primates[J]. Int J Periodontics Restorative Dent,1999,19(6):529-541.
[20]
Abrahamsson I,Berglundh T,Linder E,et al. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog[J]. Clin Oral Implants Res,2004,15(4):381-392.
[21]
Allegrini S Jr,Allegrini MR,Yoshimoto M,et al. Soft tissue integration in the neck area of titanium implants--an animal trial[J]. J Physiolo Pharmacol,2008(59 Suppl 5):117-132.
[22]
Cochran DL,Hermann JS,Schenk RK,et al. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible[J]. J Periodontol,1997,68(2):186-198.
[23]
Brägger U,Häfeli U,Huber B,et al. Evaluation of postsurgical crestal bone levels adjacent to non-submerged dental implants[J]. Clin Oral Implants Res,1998,9(4):218-224.
[24]
van Winkelhoff AJ,Goené RJ,Benschop C,et al. Early colonization of dental implants by putative periodontal pathogens in partially edentulous patients[J]. Clin Oral Implants Res,2000,11(6):511-520.
[25]
Hermann JS,Schoolfield JD,Schenk RK,et al. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible[J]. J Periodontol,2001,72(10):1372-1383.
[26]
Broggini N,McManus LM,Hermann JS,et al. Peri-implant inflammation defined by the implant-abutment interface[J]. J Dent Res,2006,85(5):473-478.
[27]
Ericsson I,Persson LG,Berglundh T,et al. Different types of inflammatory reactions in peri-implant soft tissues[J]. J Clin Periodontol,1995,22(3):255-261.
[28]
Berglundh T,Lindhe J,Ericsson I,et al. The soft tissue barrier at implants and teeth[J]. Clin Oral Implants Res,1991,2(2):81-90.
[29]
Tada S,Stegaroiu R,Kitamura E,et al. Influence of implant design and bone quality on stress/strain distribution in bone around implants:a 3-dimensional finite element analysis[J]. Int J Oral Maxillofac Implants,2003,18(3):357-368.
[30]
Okumura N. Stegaroiu R, Kitamura E, Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis[J]. J Prosthodont Res,2010,54(3):133-142.
[31]
Rahimi A,Bourauel C,Jager A,et al. Load transfer by fine threading the implant neck--a FEM study[J]. J Physiol Pharmacol,2009(60 Suppl 8):107-112.
[32]
Welander M,Abrahamsson I,Berglundh T. Placement of two-part implants in sites with different buccal and lingual bone heights[J]. J Periodontol,2009,80(2):324-329.
[33]
Enkling N,Jöhren P,Klimberg V,et al. Effect of platform switching on peri-implant bone levels:a randomized clinical trial[J]. Clin Oral Implants Res,2011,22(10):1185-1192.
[1] 王睿瑾, 张嘉琪, 衣颖杰, 吴国锋. 牙科可切削聚醚醚酮表面抛光性能的初步研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 278-283.
[2] 安维康, 张薇, 郑亚飞, 马楚凡. 影响短种植体成功率的因素探讨[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 129-134.
[3] 林娟, 李燕燕, 宋晓萌, 朱珠, 谢雯静, 张玮. 前牙美学区牙槽嵴保存延期种植的临床研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 92-97.
[4] 黄帅, 周小妮, 刘彦乐, 刘艳, 马威. 块状异质植骨材料用于牙槽嵴骨增量的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 65-71.
[5] 曾素云, 郭凤芹, 王建广. 锥形束CT评估与下颌阻生第三磨牙相关的第二磨牙远中牙槽骨缺损的危险因素[J]. 中华口腔医学研究杂志(电子版), 2021, 15(01): 13-17.
[6] 周震, 王亚敏, 杨熙, 刘文静, 张兆强. 改良骨劈开联合引导骨再生术修复上颌前牙区水平向严重骨缺损的临床效果[J]. 中华口腔医学研究杂志(电子版), 2019, 13(04): 223-229.
[7] 马婧, 曾融生. 慢性牙周炎患者与牙周健康患者种植修复疗效的对比与分析[J]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 299-304.
[8] 关梅亮, 沈宗杉, 高现灵, 林正梅. 牙髓干细胞对牙周炎中破骨细胞的作用[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 1-7.
[9] 常尧仁, 周菁, 殷丽华. 头颈部肿瘤放射治疗对口腔种植体生存率的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(05): 306-309.
[10] 冼逢珠, 陈俊兰, 吴纪楠. 个性化全瓷基台在前牙种植修复中的应用[J]. 中华口腔医学研究杂志(电子版), 2016, 10(03): 202-207.
[11] 屈梦, 杨路. 根尖周骨吸收相关因素的研究进展[J]. 中华口腔医学研究杂志(电子版), 2015, 09(06): 501-503.
[12] 范静, 李雪铃. 前牙区引导骨再生同期植入两种种植体的美学效果比较[J]. 中华口腔医学研究杂志(电子版), 2015, 09(03): 237-242.
阅读次数
全文


摘要