切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (05) : 278 -283. doi: 10.3877/cma.j.issn.1674-1366.2021.05.004

基础研究

牙科可切削聚醚醚酮表面抛光性能的初步研究
王睿瑾1, 张嘉琪1, 衣颖杰1, 吴国锋1,()   
  1. 1. 南京大学医学院附属口腔医院,南京市口腔医院修复科 210008
  • 收稿日期:2021-06-06 出版日期:2021-10-01
  • 通信作者: 吴国锋

Polishing performance of dental milled polyetheretherketone: An in vitro study

Ruijin Wang1, Jiaqi Zhang1, Yingjie Yi1, Guofeng Wu1,()   

  1. 1. Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
  • Received:2021-06-06 Published:2021-10-01
  • Corresponding author: Guofeng Wu
  • Supported by:
    National Natural Science Foundation of China(51835010); Science and Technology Project of Jiangsu Province(BE2019622)
引用本文:

王睿瑾, 张嘉琪, 衣颖杰, 吴国锋. 牙科可切削聚醚醚酮表面抛光性能的初步研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 278-283.

Ruijin Wang, Jiaqi Zhang, Yingjie Yi, Guofeng Wu. Polishing performance of dental milled polyetheretherketone: An in vitro study[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(05): 278-283.

目的

研究牙科可切削聚醚醚酮(PEEK)抛光前后表面微观形貌与粗糙度值变化,并与临床可切削临时冠桥树脂聚甲基丙烯酸甲酯(PMMA)抛光效果进行比较,探讨牙科可切削聚醚醚酮是否能满足临床抛光性能要求。

方法

选择牙科可切削聚醚醚酮材料作为实验组(PT组),以可切削临时冠桥树脂材料作为对照组(R组),通过数字化铣削技术将两者加工为圆盘形试件(直径10 mm,厚度2 mm)各7个;所有试件表面经研磨机砂纸打磨平整后,采用同一种牙科抛光系统对其表面进行抛光;每组试件分别编号为1~7,使用Excel软件生成2个1~7的随机整数,抽取随机数对应的2个试件,使用扫描电镜(SEM)观察试件抛光前后的表面形貌。使用原子力显微镜(AFM)对2组剩余的5个试件抛光前后分别进行表面扫描,观察各试件表面形貌并得到粗糙度Ra值,对各组组内抛光前后试件的Ra值进行配对样本t检验,2组间抛光前后Ra值数据进行独立样本t检验分析。

结果

通过SEM及AFM均可观察到,PT组及R组试件抛光后较抛光前表面形貌更加平整;使用AFM测得PT组抛光前Ra=(0.047 ± 0.016)μm,抛光后Ra=(0.022 ± 0.003)μm,R组抛光前Ra=(0.036 ± 0.011)μm,抛光后Ra=(0.018 ± 0.008)μm;2组材料抛光前与抛光后其Ra值均差异无统计学意义(t抛光前 = 1.075,P抛光前 = 0.309;t抛光后 = 3.562,P抛光后 = 0.070),但同种材料抛光后的试件的Ra值明显降低,抛光前后的Ra值差异具有统计学意义(tPT组 = 5.851,PPT组<0.001;tR组 = 5.166,PR组<0.001)。

结论

抛光处理可显著降低牙科可切削聚醚醚酮Ra值,与牙科可切削冠桥树脂抛光效果相近,其性能可达到口腔修复体临床抛光要求。

Objective

In this in vitro study, the effect of polishing protocols on the surface morphology and roughness of the dental-milled polyetheretherketone (PEEK) was evaluated, compared with the clinical-milled polymethylmethacrylate (PMMA) for crowns and bridges, so as to confirm whether the dental-milled PEEK can meet clinical requirements.

Methods

Two kinds of milled specimens were included in this study: dental milled PEEK (PT group) as the test group and clinical-milled PMMA for crowns and bridges (R group) as the control group. A total of seven specimens of each material were milled as cylinders with the diameter of 10 mm and the height of 2 mm. All specimens were ground using SiC paper and polished with the same polishing protocol. Among the seven specimens, two were randomly chosen. A scanning electron microscope (SEM) was used to observe the surface morphology of the specimens before and after polishing. The left five specimens were subjected to atomic force microscope (AFM) to measure the surface roughness (Ra) before and after polishing. Paired t-test was used to compare the mean values of Ra before and after polishing in each group. Independent sample t-test was used for comparison between the two groups.

Results

After polishing, each group showed a more regular surface. The Ra value of PT group decreased from (0.047 ± 0.016) μm to (0.022 ± 0.003) μm (tbefore = 1.075, Pbefore = 0.309; tafter = 3.562, Pafter = 0.070) . The Ra value of R group decreased from (0.036 ± 0.011) μm to (0.018 ± 0.008) μm (tPT group = 5.851, PPT group<0.001; tR group = 5.166, PR group<0.001) . No statistical difference in Ra value was found between groups after polishing. There was statistical difference in Ra value for each group. The Ra value of each group decreased after polishing.

Conclusions

Dental-milled PEEK could get lower surface roughness after polishing. No statistical difference in Ra values was observed between the dental-milled PEEK and the clinical-milled PMMA for crown and bridge after polishing. Dental-milled PEEK can meet the clinical requirements.

图1 试件制备及处理流程示意图 SEM为扫描电镜,AFM为原子力显微镜
图2 牙科可切削聚醚醚酮(PT组)与可切削临时冠桥树脂材料(R组)表面微观结构(SEM)A:PT组抛光前;B:R组抛光前;C:PT组抛光后;D:R组抛光后;箭头示抛光前2组材料均可见明显深划痕及凹坑
图3 牙科可切削聚醚醚酮(PT组)与可切削临时冠桥树脂材料(R组)的3D形貌图(原子力显微镜)A:PT组抛光前3D形貌图;B:R组抛光前3D形貌图;C:PT组抛光后3D形貌图;D:R组抛光后3D形貌图
图4 牙科可切削聚醚醚酮(PT组)与可切削临时冠桥树脂材料(R组)的2D形貌图(原子力显微镜)A:PT组抛光前2D形貌图;B:R组抛光前2D形貌图;C:PT组抛光后2D形貌图;D:R组抛光后2D形貌图
表1 牙科可切削聚醚醚酮(PT组)与可切削临时冠桥树脂材料(R组)抛光前后粗糙度统计结果(μm,±s
图5 牙科可切削聚醚醚酮(PT组)与可切削临时冠桥树脂材料(R组)抛光前后粗糙度统计图
[1]
Feng P, Wu P, Gao C,et al. A multimaterial scaffold with tunable properties:Toward bone tissue repair[J]. Adv Sci (Weinh)20185(6):1700817. DOI:10.1002/advs.201700817.
[2]
Xu X, Li Y, Wang L,et al. Triple-functional polyetheretherketone surface with enhanced bacteriostasis and anti-inflammatory and osseointegrative properties for implant application[J]. Biomaterials2019212:98-114. DOI:10.1016/j.biomaterials.2019.05.014.
[3]
Sinha N, Gupta N, Reddy KM,et al. Versatility of PEEK as a fixed partial denture framework[J]. J Indian Prosthodont Soc201717(1):80-83. DOI:10.4103/0972-4052.197941.
[4]
Zoidis P, Bakiri E, Polyzois G. Using modified polyetheretherketone(PEEK)as an alternative material for endocrown restorations:A short-term clinical report[J]. J Prosthet Dent2017117(3):335-339. DOI:10.1016/j.prosdent.2016.08.009.
[5]
Hao Y, Huang X, Zhou X,et al. Influence of dental prosthesis and restorative materials interface on oral biofilms[J]. Int J Mol Sci201819(10):251-267. DOI:10.3390/ijms19103157.
[6]
Bollen CM, Papaioanno W, van Eldere J,et al. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis[J]. Clin Oral Implants Res19967(3):201-211. DOI:10.1034/j.1600-0501.1996.070302.x.
[7]
Kurahashi K, Matsuda T, Ishida Y,et al. Effect of polishing protocols on the surface roughness of polyetheretherketone[J]. J Oral Sci202062(1):40-42. DOI:10.2334/josnusd.18-0473.
[8]
刘亚男,王立凯,刘思思,等. 4种抛光系统抛光Lava Ultimate表面效果的比较[J].实用口腔医学杂志201935(4):490-494. DOI:10.3969/j.issn.1001-3733.2019.04.002.
[9]
Hassan AM, Nabih SM, Mossa HM,et al. The effect of three polishing systems on surface roughness of flowable,microhybrid,and packable resin composites[J]. J Int Soc Prev Community Dent20155(3):242-247. DOI:10.4103/2231-0762.159965.
[10]
Elter C, Heuer W, Demling A,et al. Supra- and subgingival biofilm formation on implant abutments with different surface characteristics[J]. Int J Oral Maxillofac Implants200823(2):327-334. DOI:10.1016/j.ijom.2007.09.170.
[11]
Quirynen M, Bollen CM, Papaioannou W,et al. The influence of titanium abutment surface roughness on plaque accumulation and gingivitis:Short-term observations[J]. Int J Oral Maxillofac Implants199611(2):169-178.
[12]
Quirynen M, Marechal M, Busscher HJ,et al. The influence of surface free energy and surface roughness on early plaque formation. An in vivo study in man[J]. J Clin Periodontol199017(3):138-144. DOI:10.1111/j.1600-051x.1990.tb01077.x.
[13]
周建飞.不同口腔修复材料的颜色稳定性实验研究[D].石家庄:河北医科大学,2010. DOI:10.7666/d.y1800461.
[14]
Fratolin MM, Bianco VC, Santos MJ,et al. The effect of prophylactic powders on the surface roughness of enamel[J]. Compend Contin Educ Dent201435(9):e31-e35.
[15]
于凡.复合树脂抛光性能的研究[D].西安:第四军医大学,2007. DOI:10.7666/d.d036214.
[16]
苗辛超.钛表面纳米形貌对软硬组织细胞及细菌的影响[D].上海:上海交通大学,2017.
[17]
王美艳,赵婵媛,王杨洋,等.不同抛光处理对两种氧化锆陶瓷表面粗糙度和细菌粘附性能的影响[J].口腔医学研究20206(3):239-242. DOI:10.13701/j.cnki.kqyxyj.2020.03.012.
[18]
Derchi G, Vano M, Barone A,et al. Bacterial adhesion on direct and indirect dental restorative composite resins:An invitro study on a natural biofilm[J]. J Prosthet Dent2017117(5):669-676. DOI:10.1016/j.prosdent.2016.08.022.
[19]
Prechtel A, Reymus M, Edelhoff D,et al. Comparison of various 3D printed and milled PAEK materials:Effect of printing direction and artificial aging on Martens parameters[J]. Dent Mater202036(2):197-209. DOI:10.1016/j.dental.2019.11.017.
[20]
Liebermann A, Wimmer T, Schmidlin PR,et al. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media[J]. J Prosthet Dent2016115(3):321-328+328.e1-328.e2. DOI:10.1016/j.prosdent.2015.09.004.
[21]
马可,高燕,童忠春,等.不同抛光系统对纳米树脂表面粗糙度和菌斑黏附的影响[J/OL].中华口腔医学研究杂志(电子版)201610(1):17-21. DOI:10.3877/cma.j.issn.1674-1366.2016.01.004.
[22]
王南燕,欧阳勇.纳米填料复合树脂抛光后表面粗糙度及微结构的比较[J/OL].中华口腔医学研究杂志(电子版)20104(1):27-33. DOI:10.3969/j.issn.1674-1366.2010.01.006.
[23]
卢毅. SiC非球面反射镜计算机控制研磨关键技术研究[D].长沙:国防科学技术大学,2014. DOI:10.7666/d.D01107686.
[24]
杨健林.二氧化钛及其石墨烯复合材料的合成和性能研究[D].哈尔滨:哈尔滨工业大学,2015. DOI:10.7666/d.D755058.
[25]
王瑞莉,袁重阳,潘怡湘,等.流动与膏体复合树脂表面抛光性能的比较研究[J].中华口腔医学杂志201752(4):243-247. DOI:10.3760/cma.j.issn.1002-0098.2017.04.010.
[1] 邱超, 周潘宇, 许硕贵. 医用可降解形状记忆聚合物研究进展[J]. 中华损伤与修复杂志(电子版), 2017, 12(04): 306-308.
[2] 安维康, 张薇, 郑亚飞, 马楚凡. 影响短种植体成功率的因素探讨[J]. 中华口腔医学研究杂志(电子版), 2021, 15(03): 129-134.
[3] 梁亮, 伍昕宇, 晏奇, 施斌. 一体式和分体式氧化锆基台长期存留率及机械并发症的Meta分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 103-109.
[4] 范毅杰, 李媛, 胡晓文. 不同颈部设计种植体在骨愈合期边缘骨变化的临床分析[J]. 中华口腔医学研究杂志(电子版), 2018, 12(03): 169-175.
[5] 黄紫华, 孙秋榕, 陈慧敏, 王若旬, 麦穗. 羧甲基壳聚糖稳定液相矿化前体诱导胶原纤维仿生矿化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 136-141.
[6] 孙玥, 罗恩, 纪焕中, 陈贵征, 龚涛, 刘显. 形状记忆可吸收支架的制备及其在骨组织应用的体外研究[J]. 中华口腔医学研究杂志(电子版), 2016, 10(04): 244-249.
[7] 李帛, 武国军, 李振宇, 袁建林, 孟平, 杨力军, 王福利, 刘飞. 输尿管支架在恶性肿瘤引起的输尿管梗阻治疗中的应用新进展[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(04): 316-320.
阅读次数
全文


摘要