切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (03) : 136 -141. doi: 10.3877/cma.j.issn.1674-1366.2017.03.002

所属专题: 文献

基础研究

羧甲基壳聚糖稳定液相矿化前体诱导胶原纤维仿生矿化
黄紫华1, 孙秋榕2, 陈慧敏1, 王若旬1, 麦穗1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 341000 赣州,赣南医学院第一附属医院口腔科
  • 收稿日期:2017-03-09 出版日期:2017-06-01
  • 通信作者: 麦穗
  • 基金资助:
    国家自然科学基金(青年科学基金项目,81100743); 广东省科技计划(国际合作项目,2013B051000031); 广东省自然科学基金(2014A030313068)

Biomimetic mineralization of collagen fibrils via carboxymethyl chitosan stabilized liquid precursor

Zihua Huang1, Qiurong Sun2, Huimin Chen1, Ruoxun Wang1, Sui Mai1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Department of Stomatology, the First Affiliated Hospital of Gannan Medical College, Ganzhou 341000, China
  • Received:2017-03-09 Published:2017-06-01
  • Corresponding author: Sui Mai
  • About author:
    Corresponding author: Mai Sui, Email:
引用本文:

黄紫华, 孙秋榕, 陈慧敏, 王若旬, 麦穗. 羧甲基壳聚糖稳定液相矿化前体诱导胶原纤维仿生矿化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(03): 136-141.

Zihua Huang, Qiurong Sun, Huimin Chen, Ruoxun Wang, Sui Mai. Biomimetic mineralization of collagen fibrils via carboxymethyl chitosan stabilized liquid precursor[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(03): 136-141.

目的

通过构建二维及三维胶原模型,探讨羧甲基壳聚糖(CMC)在胶原纤维仿生矿化中的作用及优化体外仿生矿化的策略,为最终的临床应用提供实验依据。

方法

CMC-磷酸钙溶液浊度实验筛选CMC诱导仿生矿化的工作浓度。在此基础上,采用Ⅰ型胶原冻干粉制备二维胶原模型,将胶原膜修剪成5 mm × 5 mm × 1 mm作为三维胶原支架,以含上述工作浓度CMC的饱和磷酸钙溶液作为仿生矿化诱导液,对二维及三维胶原进行矿化,不含CMC的传统矿化液作为对照组。采用透射电子显微镜观察二维胶原超微结构的变化,选区电子衍射明确矿化相,电子能谱分析矿化物的钙磷比(Ca/P)。通过热重分析(TGA)、X线衍射(XRD)分析三维胶原膜的矿化程度及晶体成分。

结果

200 μg/ml CMC是持续维持磷酸钙溶液澄清7 d的最低浓度,作为后续矿化的工作浓度。透射电镜结果显示,CMC诱导胶原仿生矿化3 d,可见胶原纤维内针状矿化晶体沉积,选区电子衍射证实为羟基磷灰石(HA)。TGA结果显示,仿生矿化14 d的三维胶原膜矿化物含量为18.39%,XRD结果可见HA的特征性衍射峰。

结论

CMC可通过稳定液相矿化前体的方式诱导胶原纤维的体外仿生矿化,同时促进合成矿化程度相对较高的胶原-HA复合物,为胶原纤维仿生矿化的最终临床应用提供了实验依据。

Objective

To test the hypothesis that the carboxymethyl chitosan (CMC) stabilized liquid precursors can induce biomimetic mineralization of collagen fibrils.

Methods

CMC-calcium phosphate solution turbidity assessment was used to determine the working concentration of CMC. Reconstituted 2-D typeⅠ collagen model and 3-D collagen membranes were treated with saturated calcium phosphate solution containing the above working concentration of CMC. Samples treated with traditional mineralization liquids (without CMC) were acted as control. The ultrastructural changes of the 2-D collagen were observed by transmission electron microscopy (TEM) and the mineral phase was determined by selected area electron diffraction (SAED) /energy dispersive X-ray analysis (EDXA) . The mineralization composition and degree of 3-D collagen film were analyzed by thermogravimetric (TG) and X-ray diffraction (XRD) .

Results

According to turbidity assessment of CMC, 200 μg/ml CMC was able to stabilizing calcium phosphate liquid for 7 days and selected for further experiments. Through TEM observation and SAED analysis, needle-like crystals along the long axis of the fibrils were observed in the intrafibrillar spaces of collagen fibrils on the 3rd day. SAED analysis showed the typical diffraction ring of hydroxyapatite. EDXA revealed that the Ca/P of minerals in the collagen fibrils was 1.56. As for 3-D collagen model, the mineral content of collagen membrane treated with the biomimetic mineralization liquid for 14 days was 18.39% via TG analysis and the mineral phase was confirmed to be hydroxyapatite according to XRD curves.

Conclusions

Carboxymethyl chitosan can induce the biomimetic mineralization of collagen fibrils through stabilizing of liquid precursor and synthesize biomimetic collagen-hydroxyapatite complex with relatively higher degree of mineralization.

图1 含不同浓度CMC的磷酸钙溶液浊度分析
表1 CMC诱导二维胶原纤维仿生矿化3、7 d电子能谱结果
图2 二维胶原纤维透射电镜、选区电子衍射图
图3 各组三维胶原样本热重分析重量-温度变化曲线
图4 各组三维胶原样本X线衍射分析图
[1]
Li Y, Thula TT, Jee S,et al. Biomimetic mineralization of woven bone-like nanocomposites:role of collagen cross-links[J]. Biomacromolecules,2012,13(1):49-59.
[2]
Olszta MJ, Cheng X, Jee S,et al. Bone structure and formation:A new perspective[J]. Mat Sci Eng R,2007,58(3-5):77-116.
[3]
Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine[J]. Biomaterials,2008,29(8):1127-1137.
[4]
Jiao K, Niu L, Ma C,et al. Complementarity and uncertainty in intrafibrillar mineralization of collagen[J]. Adv Funct Mater,2016,26(38):6858-6875.
[5]
Niu L, Jee SE, Jiao K,et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality[J]. Nat Mater,2016,16(3):370-378.
[6]
Chen Z, Cao S, Wang H,et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries[J]. PLoS One,2015,10(1):e116553.
[7]
Jee S, Thula TT, Gower LB. Development of bone-like composites via the polymer-induced liquid-precursor(PILP)process. Part 1:influence of polymer molecular weight[J]. Acta Biomater,2010,6(9):3676-3686.
[8]
Upadhyaya L, Singh J, Agarwal V,et al. Biomedical applications of carboxymethyl chitosans[J]. Carbohyd Polym,2013,91(1):452-466.
[9]
Thula TT, Svedlund F, Rodriguez DE,et al. Mimicking the nanostructure of bone:comparison of polymeric process-directing agents[J]. Polymers,2011,3(1):10-35.
[10]
Price PA, Toroian D, Lim JE. Mineralization by inhibitor exclusion:the calcification of collagen with fetuin[J]. J Biol Chem,2009,284(25):17092-17101.
[11]
Toroian D, Lim JE, Price PA. The size exclusion characteristics of typeⅠ collagen:implications for the role of noncollagenous bone constituents in mineralization[J]. J Biol Chem,2007,282(31):22437-22447.
[12]
Lees S. A model for the distribution of HAP crystallites in bone--an hypothesis[J]. Calcif Tissue Int,1979,27(1):53-56.
[13]
Nudelman F, Pieterse K, George A,et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors[J]. Nat Mater,2010,9(12):1004-1009.
[14]
Rodriguez DE, Thula-Mata T, Toro EJ,et al. Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts[J]. Acta Biomater,2014,10(1):494-507.
[15]
Biltz RM, Pellegrino ED. The chemical anatomy of bone. I. A comparative study of bone composition in sixteen vertebrates[J]. J Bone Joint Surg Am,1969,51(3):456-466.
[16]
Lees S. A mixed packing model for bone collagen[J]. Calcif Tissue Int,1981,33(6):591-602.
[1] 周鹏, 周文重, 李亮, 黄淑亚, 郑超, 余之刚. 胶原蛋白在乳腺癌诊疗中的研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 29-33.
[2] 何雪锋, 赵世新, 李珮珊, 刘恒登, 谢举临. 卡奴卡叶提取物通过增强真皮成纤维细胞功能促进大鼠创面修复的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 405-412.
[3] 魏忠玲, 陈赟, 叶美霞, 杨珺雯, 袁竺方. 不同种类敷料治疗糖尿病足疗效比较的网状荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 157-165.
[4] 黄晓罡, 牛东升, 闫香果, 张克松, 何军民, 王晓军, 刘媛媛. 局部应用重组人Ⅲ型胶原蛋白水凝胶对糖尿病患者创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 430-434.
[5] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[6] 赵路, 张哲儒, 贾骏麒, 宗春琳, 景莉, 郭凯, 田磊. M2型巨噬细胞抑制放射后骨髓间充质干细胞向肌成纤维细胞转化的实验研究[J]. 中华口腔医学研究杂志(电子版), 2021, 15(04): 198-206.
[7] 张升敏, 黄健斌, 陈亮, 马克强. Ⅰ、Ⅲ型胶原蛋白在成人腹股沟斜疝及直疝患者腹横筋膜和疝囊的表达[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 516-521.
[8] 邱佳辉, 韩超, 黄陈. 胶原蛋白在结直肠癌中的研究现状与进展[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 281-287.
[9] 陈乐然, 袁翌斐, 陈跃国. 儿童圆锥角膜发病机制与角膜胶原交联术适应证及治疗研究的新进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 50-54.
[10] 张艺凡, 戴锦晖, 叶琳. 促渗剂在去上皮角膜胶原交联术和跨上皮角膜胶原交联术中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 188-192.
[11] 隋曌, 彭凤, 余凯, 严小虎, 李英, 钟琳, 刘晓银. 吸附NT-3的3D打印胶原蛋白/壳聚糖支架改善脊髓损伤后的运动功能[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 331-338.
[12] 彭汉书, 刘彬, 陈令斌, 刘融. 血清BALP、NTX在糖尿病足骨髓炎患者中的表达及意义[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 359-363.
[13] 秦维, 王丹, 孙玉, 霍玉玲, 祝素平, 郑艳丽, 薛瑞. 血清层粘连蛋白、Ⅳ型胶原蛋白对代偿期肝硬化食管胃静脉曲张出血的预测价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 447-451.
[14] 李刚, 白若濛, 黄琳, 李松果. 兔眼角膜交联术后基质重塑对角膜生物力学稳定性的影响[J]. 中华临床医师杂志(电子版), 2021, 15(07): 537-541.
[15] 徐高丽, 张建兴, 周健, 沈文俊, 谷志远, 徐国超. 静压力下缺氧诱导因子-1α信号通路对髁突软骨细胞增殖与凋亡的调控作用[J]. 中华老年病研究电子杂志, 2021, 08(03): 24-29.
阅读次数
全文


摘要