切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 1 -7. doi: 10.3877/cma.j.issn.1674-1366.2018.01.001

所属专题: 文献

基础研究

牙髓干细胞对牙周炎中破骨细胞的作用
关梅亮1, 沈宗杉1, 高现灵1, 林正梅1,()   
  1. 1. 510050 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
  • 收稿日期:2017-10-20 出版日期:2018-02-01
  • 通信作者: 林正梅
  • 基金资助:
    国家自然科学基金(81670984); 广东省科技计划(2016B050502008)

The effect of dental pulp stem cells on osteoclasts in periodontitis

Meiliang Guan1, Zongshan Shen1, Xianling Gao1, Zhengmei Lin1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2017-10-20 Published:2018-02-01
  • Corresponding author: Zhengmei Lin
  • About author:
    Corresponding author:Lin Zhengmei,Email:
引用本文:

关梅亮, 沈宗杉, 高现灵, 林正梅. 牙髓干细胞对牙周炎中破骨细胞的作用[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 1-7.

Meiliang Guan, Zongshan Shen, Xianling Gao, Zhengmei Lin. The effect of dental pulp stem cells on osteoclasts in periodontitis[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(01): 1-7.

目的

研究牙髓干细胞(DPSC)对牙周炎中破骨细胞形成及牙槽骨再生的影响,并初步探索DPSC对小鼠破骨细胞的作用机制。

方法

体外诱导小鼠骨髓单核细胞破骨分化,观察破骨细胞组(OC组)及其与DPSC共培养组(OC+DPSC组)的抗酒石酸酸性磷酸酶(TRAP)染色情况,实时荧光定量聚合酶链反应(PCR)检测破骨分化相关基因包括活化T细胞核因子(NFATc1)、基质金属蛋白酶9(MMP-9)及TRAP的表达差异。体内构建小鼠慢性牙周炎模型,通过微计算机体层摄影(micro-CT)扫描后三维重建,比较慢性牙周炎+0.9%氯化钠溶液注射组(NS组)和慢性牙周炎+DPSC注射组(DPSC组)釉牙骨质界至牙槽嵴顶(CEJ-ABC)距离,并对标本进行苏木精-伊红和TRAP染色,观察DPSC对小鼠破骨细胞及牙槽骨再生的影响。采用SPSS 20.0软件进行数据统计分析,采用独立样本t检验及校正t检验分析组间差异。

结果

体外TRAP染色发现,与DPSC共培养明显抑制成熟破骨细胞形成,OC+DPSC组成熟破骨细胞均数(4.2 ± 0.2)少于OC组均数(6.8 ± 0.2),差异有统计学意义(t= 15.922,P<0.001);破骨细胞表面积均数(0.046 ± 0.007)mm2也明显小于OC组(0.763 ± 0.015)mm2,差异有统计学意义(t = 83.174,P<0.001)。相对OC组,OC+DPSC共培养组的MMP-9NFATc1TRAP的mRNA相对表达量明显降低,均值分别为0.38 ± 0.17(t = 6.217,P = 0.003)、0.24 ± 0.12(t = 10.569,P = 0.003)和0.55 ± 0.13(t = 6.077,P = 0.026)。micro-CT扫描结果显示,DPSC注射组CEJ-ABC的平均距离为(0.215 ± 0.017)mm,明显小于0.9%氯化钠溶液组(0.311 ± 0.022)mm,差异有统计学意义(t= 10.921,P<0.001),组织学观察下DPSC组炎症反应较0.9%氯化钠溶液组轻,且破骨细胞更少。

结论

DPSC可通过抑制牙周炎破骨细胞的形成从而促进牙槽骨再生,有望作为一种可局部注射的骨代谢双向调节生物制剂,治疗临床上包括牙周炎等因骨代谢失衡引起的炎症性骨吸收疾病。

Objective

To explore the effect of dental pulp stem cells (DPSC) on osteoclasts and the regeneration of the alveolar bone in periodontitis, and to preliminarily investigate the underlying machanism.

Methods

Monocytes were co-cultured with DPSC on osteoclastogenesis. TRAP staining were performed to observe the osteoclastogenesis of osteoclast group and DPSC co-culture group, and RT-PCR was applied to analyze the osteoclast-related genes, including NFATc1, MMP-9 and TRAP. Periodontitis models were established. Micro-CT scanning was performed to evaluate the distance from cementum-enamel junction to alveolar bone crest (CEI-ABC) of DPSC injection group and 0.9% sodium chloride solution injection group. HE and TRAP staining were also performed to compare the inflammatory response and osteoclast formation. The data were processed by the SPSS 20.0 software. T test and t′ test were used to analyze the difference between the groups.

Results

It′s found in TRAP staining that co-culture with DPSC successfully inhibited osteoclast formation. The mean osteoclast number in DPSC co-culture group (4.2 ± 0.2) was significantly less than osteoclast group (6.8 ± 0.2) (t = 15.922, P<0.001) , and the mean cell size (0.046 ± 0.007) mm2 was also less than osteoclast group (0.763 ± 0.015) mm2 (t = 83.174, P<0.001) . Compared with those of osteoclast group, the expression of osteoclastogenesis-related genes including NFATc1, MMP-9 and TRAP of DPSC co-culture group were statistically lower, the value of which were 0.38 ± 0.17 (t = 6.217, P = 0.003) , 0.24 ± 0.12 (t = 10.569, P = 0.003) , 0.55 ± 0.13 (t = 6.077, P = 0.026) respectively. Micro-CT scanning showed that the CEI-ABC distance of DPSC group (0.215 ± 0.017) mm was lower than that of NS group (0.311 ± 0.022) mm (t = 10.921, P<0.001) . Histologic examination showed a less sever inflammatory response and a less osteoclast formation in DPSC group than those in NS group.

Conclusions

DPSC may promote the alveolar bone regeneration via inhibiting the osteoclast formation in chronic periodontitis. As a promising bi-directional biological agent for bone metabolism, DPSC may show good probability for the treatment of inflammatory bone resorption diseases including periodontitis in the future.

表1 实时荧光定量聚合酶链反应引物
图1 牙髓干细胞形态特点及诱导分化鉴定(倒置相差显微镜低倍放大)
图2 牙髓干细胞共培养抑制成熟破骨细胞形成及统计学分析
图3 实时荧光定量PCR检测牙髓干细胞对破骨细胞相关基因表达的变化(aP<0.05)
图4 micro-CT评估牙髓干细胞对小鼠牙槽骨再生的影响及统计学分析
图5 牙髓干细胞促进牙周炎小鼠牙周组织的修复(苏木精-伊红染色低倍放大)
图6 牙髓干细胞抑制牙周炎小鼠牙周组织中破骨细胞的形成(TRAP染色低倍放大)
[1]
Petersen PE,Ogawa H. The global burden of periodontal disease:towards integration with chronic disease prevention and control[J]. Periodontol 2000,2012,60(1):15-39.
[2]
Han J,Menicanin D,Gronthos S,et al. Stem cells,tissue engineering and periodontal regeneration[J]. Aust Dent J,2014(59 Suppl 1):117-130.
[3]
Hu L,Liu Y,Wang S. Stem cell-based tooth and periodontal re-generation[J/OL]. Oral Dis,2017[2017-12-28]. published online ahead of print June 21,2017].

URL    
[4]
Liu J,Yu F,Sun Y,et al. Concise reviews:Characteristics and potential applications of human dental tissue-derived mesenchy-mal stem cells[J]. Stem Cells,2015,33(3):627-638.
[5]
Morad G,Kheiri L,Khojasteh A. Dental pulp stem cells for in vivo bone regeneration:a systematic review of literature[J]. Arch Oral Biol,2013,58(12):1818-1827.
[6]
Sakai K,Yamamoto A,Matsubara K,et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms[J]. J Clin Invest,2012,122(1):80-90.
[7]
Shizhu J,Xiangwei M,Xun S,et al. Bone marrow mononuclear cell transplant therapy in mice with CCl4-induced acute liver failure[J]. Turk J Gastroenterol,2012,23(4):344-352.
[8]
张晓敏,郭恪,任春霞,等.牙周炎骨丧失机制中关于炎症和解偶联的研究[J].国际口腔医学杂志,2013,40(2):206-208.
[9]
Hajishengallis G. Immunomicrobial pathogenesis of periodonti-tis:keystones,pathobionts,and host response[J]. Trends Immu-nol,2014,35(1):3-11.
[10]
Lee DE,Kim JH,Choi SH,et al. Periodontitis mainly increases osteoclast formation via enhancing the differentiation of quiescent osteoclast precursors into osteoclasts[J]. J Periodontal Res,2015,50(2):256-264.
[11]
Henriksen K,Bollerslev J,Everts V,et al. Osteoclast activity and subtypes as a function of physiology and pathology—implications for future treatments of osteoporosis[J]. Endocr Rev,2011,32(1):31-63.
[12]
Fierro FA,Nolta JA,Adamopoulos IE. Concise Review:Stem Cells in Osteoimmunology[J]. Stem Cells,2017,35(6):1461-1467.
[13]
Chen S,Ye X,Yu X,et al. Co-culture with periodontal ligament stem cells enhanced osteoblastic differentiation of MC3T3-E1 cells and osteoclastic differentiation of RAW264.7 cells[J]. Int J Clin Exp Pathol,2015,8(11):14596-14607.
[14]
Ishikawa J,Takahashi N,Matsumoto T,et al. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis[J]. Bone,2016(83):210-219.
[15]
曾浩,万启龙.破骨细胞大小的调控及其机制[J].中华口腔医学杂志,2016,51(1):58-62.
[16]
Kim JH,Kim N. Regulation of NFATc1 in Osteoclast Differentia-tion[J]. J Bone Metab,2014,21(4):233-241.
[17]
Wang L,Lu WG,Shi J,et al. Antiosteoporotic effects of tetramethylpyrazine via promoting osteogenic differentiation and inhibiting osteoclast formation[J]. Mol Med Rep,2017,16(6):8307-8314.
[18]
Hienz SA,Paliwal S,Ivanovski S. Mechanisms of Bone Resorption in Periodontitis[J]. J Immunol Res,2015(2015):615486.
[19]
Bloemen V,Schoenmaker T,de Vries TJ,et al. Direct cell-cell contact between periodontal ligament fibroblasts and osteoclast precursors synergistically increases the expression of genes related to osteoclastogenesis[J]. J Cell Physiol,2010,222(3):565-573.
[1] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[2] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[3] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[4] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[5] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[6] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要