切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2018, Vol. 12 ›› Issue (01) : 8 -13. doi: 10.3877/cma.j.issn.1674-1366.2018.01.002

所属专题: 文献

基础研究

季铵盐包裹溴化银纳米复合物对基质金属蛋白酶活性的影响
胡运通1, 黄芳1, 陈银燕1, 张瑜1, 肖玉鸿1,()   
  1. 1. 650032 昆明,成都军区昆明总医院口腔科,昆明医科大学教学医院
  • 收稿日期:2018-01-01 出版日期:2018-02-01
  • 通信作者: 肖玉鸿
  • 基金资助:
    国家自然科学基金(81460107)

The effect of AgBr/cationic polymer nanocomposite on matrix metalloproteinase activities

Yuntong Hu1, Fang Huang1, Yinyan Chen1, Yu Zhang1, Yuhong Xiao1,()   

  1. 1. Department of Stomatology, Kunming General Hospital of Chengdu Military Command, Teaching Hospital of Kunming Medical University, Kunming 650032, China
  • Received:2018-01-01 Published:2018-02-01
  • Corresponding author: Yuhong Xiao
  • About author:
    Corresponding author:Xiao Yuhong,Email:
引用本文:

胡运通, 黄芳, 陈银燕, 张瑜, 肖玉鸿. 季铵盐包裹溴化银纳米复合物对基质金属蛋白酶活性的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 8-13.

Yuntong Hu, Fang Huang, Yinyan Chen, Yu Zhang, Yuhong Xiao. The effect of AgBr/cationic polymer nanocomposite on matrix metalloproteinase activities[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2018, 12(01): 8-13.

目的

研究季铵盐包裹溴化银纳米复合物(AgBr/BHPVP)对牙本质基质金属蛋白酶(MMP)活性的影响。

方法

采用比色试剂盒检测浓度为0.5% ~ 1.5% AgBr/BHPVP对游离型重组人基质金属蛋白酶rhMMP-2、rhMMP-8、rhMMP-9活性的影响。将脱矿的牙本质经0.2%氯己定(CHX)或不同浓度AgBr/BHPVP处理,分别在第3、5、7天测定释放Ⅰ型胶原吡啶交联终肽(ICTP)水平和第30天时测量牙本质条干重损失量,以及使用明胶酶谱法检测对牙源性明胶酶MMP-2、MMP-9活性的影响,用以评估AgBr/BHPVP对结合型MMP活性的影响。采用单因素方差(One-Way ANOVA)分析各处理组rhMMP活性以及各处理组牙本质条干重损失量总体差异,使用重复测量方差分析各处理组在不同时间点对ICTP释放水平的影响,Tukey检验进行组间两两对比。

结果

检测浓度AgBr/BHPVP对游离型MMP均具有明显的抑制作用,浓度达1.5%时对rhMMP-2、rhMMP-8、rhMMP-9活性抑制接近90%。ICTP释放量在7 d时,AgBr/BHPVP组<CHX组<空白组,差异有统计学意义(F= 65.389,P<0.001);相比空白组牙本质条干重损失百分比(16.34 ± 3.60)%,1.5% AgBr/BHPVP组损失最少(4.30 ± 0.98)%,各组差异有统计学意义(F = 48.564,P<0.001);明胶酶谱中除AgBr组外,其余组对明胶酶均有明显抑制效果。

结论

适量浓度AgBr/BHPVP对游离型rhMMP和结合型MMP活性具有明显的抑制作用,具有进一步运用于牙科材料提高牙本质粘接性能的前景。

Objective

This study was aimed to evaluate the effects of AgBr/cationic polymer nanocomposite (AgBr/BHPVP) on dentin matrix metalloproteinase (MMPs) .

Methods

Inactivation effects of AgBr/BHPVP at different concentrations on soluble recombinant human MMPs (rhMMPs) were evaluated using a colorimetric assay kit. Matrix-bound endogenous MMPs activity was evaluated via dry mass loss and C-terminal cross-linked telopeptide (ICTP) release of demineralized human dentin. Demineralized dentin beams or powder were respectively pretreated with 0.2% chlorhexidine (CHX) or AgBr/BHPVP at different mass%. Changes in ICTP release were examined after 3, 5 and 7 days, and loss of dry mass was measured after 30 days. Besides this, gelatin zymography was also used to evaluate the effects of different pretreated groups on MMP-2 and MMP-9. One-Way ANOVA test was applied to analyze the overall difference of inactivation function on rhMMPs and dry mass loss in each group. Repeated measures ANOVA was used to analyze the effects of time on the ICTP release in different groups, while Tukey′s test was used for the comparison between every two groups.

Results

AgBr/BHPVP exhibited inactivation function on soluble MMPs, with about 90% of inhibition on rhMMP-2, rhMMP-8 and rhMMP-9 at 1.5% AgBr/BHPVP concentration. Compared with control group and CHX group, AgBr/BHPVP pretreated demineralized dentin exhibited the lowest ICTP release after 7 days (F= 65.389, P<0.001) . Dentine beams incubated in 1.5% AgBr/BHPVP showed only (4.3 ± 0.98) % loss of dry mass vs. (16.34 ± 3.60) % loss for control. Except for AgBr group, other pretreated groups had obvious inhibition on gelatinase activity in gelatin zymography.

Conclusions

A moderate amount of AgBr/BHPVP is effective in inhibiting both soluble and matrix-bound MMPs. AgBr/BHPVP may have the potential to be used in dental materials and improve the resin-dentin bonding durability.

图1 季铵盐包裹溴化银纳米复合物(AgBr/BHPVP)结构图
表1 游离型基质金属蛋白酶实验分组
表2 结合型基质金属蛋白酶实验分组
图2 季铵盐包裹溴化银纳米复合物(AgBr/BHPVP)对游离型基质金属蛋白酶(MMP)活性抑制率(%)
表3 不同处理组脱矿牙本质在不同时间Ⅰ型胶原吡啶交联终肽释放浓度(ng/mL, ± s
图3 不同处理组脱矿牙本质在不同时间Ⅰ型胶原吡啶交联终肽释放浓度
图4 明胶酶谱法检测不同处理组对牙源性明胶酶活性影响
图5 经30 d培养后不同处理组牙本质条干重损失百分比情况
[1]
Tjaderhane L,Nascimento FD,Breschi L,et al. Optimizing dentin bond durability:control of collagen degradation by matrix metalloproteinases and cysteine cathepsins[J]. Dent Mater,2013,29(1):116-135.
[2]
Perdigão J,Reis A,Loguercio AD. Dentin adhesion and MMPs:a comprehensive review[J]. J Esthet Restor Dent,2013,25(4):219-241.
[3]
Tezvergil-Mutluay,Agee KA,Mazzoni A,et al. Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins?[J]. Dent Mater,2015,31(2):e25-e32.
[4]
Mazzoni A,Scaffa P,Carrilho M,et al. Effects of etch-and-rinse and self-etch adhesives on dentin MMP-2 and MMP-9[J]. J Dent Res,2013,92(1):82-86.
[5]
Jacobsen JA,Fullagar JL,Miller MT,et al. Identifying chelators for metalloprotein inhibitors using a fragment-based approach[J]. J Med Chem,2011,54(2):591-602.
[6]
Breschi L,Mazzoni A,Ruggeri A,et al. Dental adhesion review:aging and stability of the bonded interface[J]. Dent Mater,2008,24(1):90-101.
[7]
Wang DY,Zhang L,Fan J,et al. Matrix metalloproteinases in human sclerotic dentine of attrited molars[J]. Arch Oral Biol,2012,57(10):1307-1312.
[8]
Feitosa SA,Palasuk J,Kamocki K,et al. Doxycycline-encapsu-lated nanotube-modified dentin adhesives[J]. J Dent Res,2014,93(12):1270-1276.
[9]
Cha HS,Shin DH. Antibacterial capacity of cavity disinfectants against Streptococcus mutans and their effects on shear bond strength of a self-etch adhesive[J]. Dent Mater J,2016,35(1):147-152.
[10]
Kim J,Uchiyama T,Carrilho M,et al. Chlorhexidine binding to mineralized versus demineralized dentin powder[J]. Dent Mater,2010,26(8):771-778.
[11]
Stanislawczuk R,Pereira F,Muñoz MA,et al. Effects of chlorhexidine-containing adhesives on the durability of resin-dentine interfaces[J]. J Dent,2014,42(1):39-47.
[12]
Umer D,Yiu CK,Burrow MF,et al. Effect of a novel quaternary ammonium silane on dentin protease activities[J]. J Dent,2017(58):19-27.
[13]
Li F,Majd H,Weir MD,et al. Inhibition of matrix metallopro-teinase activity in human dentin via novel antibacterial monomer[J]. Dent Mater,2015,31(3):284-292.
[14]
Mei ML,Li QL,Chu CH,et al. The inhibitory effects of silver diamine fluoride at different concentrations on matrix metalloproteinases[J]. Dent Mater,2012,28(8):903-908.
[15]
Cao W,Zhang Y,Wang X,et al. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites[J]. J Mater Sci Mater Med,2017,28(7):103.
[16]
Pinna R,Usai P,Filigheddu E,et al. The role of adhesive materials and oral biofilm in the failure of adhesive resin restorations[J]. Am J Dent,2017,30(5):285-292.
[17]
Kong K,Hiraishi N,Nassar M,et al. Effect of phytic acid etchant on resin-dentin bonding:Monomer penetration and stability of dentin collagen[J]. J Prosthodont Res,2017,61(3):251-258.
[18]
Tezvergil-Mutluay A,Agee KA,Uchiyama T,et al. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs[J]. J Dent Res,2011,90(4):535-540.
[19]
Jain J,Arora S,Rajwade JM,et al. Silver nanoparticles in therapeutics:development of an antimicrobial gel formulation for topical use[J]. Mol Pharm,2009,6(5):1388-1401.
[20]
Cheng L,Weir MD,Zhang K,et al. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate[J]. J Dent,2013,41(4):345-355.
[21]
Zhou W,Ren B,Zhou X,et al. Novel Cavity Disinfectants Con-taining Quaternary Ammonium Monomer Dimethylaminododecyl Methacrylate[J]. Materials,2016,9(8):674.
[22]
Garnero P,Ferreras M,Karsdal MA,et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation[J]. J Bone Miner Res,2003,18(5):859-867.
[23]
Tezvergil-Mutluay A,Mutluay M,Seseogullari-Dirihan R,et al. Effect of phosphoric acid on the degradation of human dentin matrix[J]. J Dent Res,2013,92(1):87-91.
[24]
Mazzoni A,Tjäderhane L,Checchi V,et al. Role of dentin MMPs in caries progression and bond stability[J]. J Dent Res,2015,94(2):241-251.
[25]
Seseogullari-Dirihan R,Tjäderhane L,Pashley DH,et al. Effect of ultraviolet A-induced crosslinking on dentin collagen matrix[J]. Dent Mater,2015,31(10):1225-1231.
[1] 王青青, 耿翠芝, 苏晓雨, 彭玉晓, 秦明祎, 刘风侠. 乳腺癌芳香化酶抑制剂相关肌肉骨骼不良反应的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 243-249.
[2] 杨继鑫, 李南林. 细胞周期蛋白依赖激酶4和6抑制剂研究进展[J]. 中华乳腺病杂志(电子版), 2021, 15(05): 315-319.
[3] 李兴, 李震, 肖方骏, 翁家贤, 潘建科, 何沛恒, 苏海涛. 微小RNA-27b-3p与基质金属蛋白酶13在人软骨细胞的对应关系[J]. 中华关节外科杂志(电子版), 2022, 16(04): 431-440.
[4] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[5] 刘锐, 王树明. 丙戊酸钠抗休克作用及其相关机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 359-362.
[6] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[7] 陈俞坊, 王康, 吴文昊, 张厚丽, 周向东. EGFR敏感突变ⅠA期浸润性肺腺癌术后辅助靶向治疗预后分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 776-781.
[8] 沈冶中, 胡智刚, 吴黎明, 伍宏玲. EGFR-TKI联合放疗对NSCLC脑转移的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 844-846.
[9] 饶汕, 陈瑞, 吕晶. EGFR-TKI化疗后NSCLC肺叶切除术的疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 700-702.
[10] 甘开梅, 黄剑. 肺癌干细胞对EGFR-TKI耐药影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 36-44.
[11] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[12] 佘重阳, 卢弘. Janus激酶抑制剂在幼年特发性关节炎相关葡萄膜炎治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 104-108.
[13] 黄晴, 赵瑞珩, 钱惠英. PCI-24781诱导SKOV-3细胞凋亡及相关机制的研究[J]. 中华临床医师杂志(电子版), 2022, 16(08): 775-781.
[14] 马文文, 呼敏, 王贵红, 高健. miR-103a-2、miR-122和vaspin在非酒精性脂肪性肝病合并HBV感染中的表达及意义[J]. 中华临床医师杂志(电子版), 2022, 16(02): 170-174.
[15] 李娜, 李军, 郭李平, 王海雄. 血管紧张素受体脑啡肽酶抑制剂在心律失常患者中的应用[J]. 中华心脏与心律电子杂志, 2023, 11(01): 39-44.
阅读次数
全文


摘要