切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 269 -275. doi: 10.3877/cma.j.issn.1674-1366.2024.04.009

综述

多聚ADP核糖聚合酶1在口腔鳞状细胞癌精准诊疗中的作用机制及转化价值
曾德荣1, 马琳2, 李星瀚2, 胡伟涛2, 刘琦3, 邓永强2,()   
  1. 1. 深圳大学总医院口腔科,深圳 518055;深圳大学口腔医学研究所,深圳 518055;杭州师范大学口腔医学院,杭州 311121
    2. 深圳大学总医院口腔科,深圳 518055;深圳大学口腔医学研究所,深圳 518055
    3. 深圳大学口腔医学研究所,深圳 518055;深圳大学医学部国际肿瘤中心,深圳 518055
  • 收稿日期:2024-01-26 出版日期:2024-08-01
  • 通信作者: 邓永强

The importance of poly (ADP-ribose) polymerase 1 in precision medicine of oral squamous cell carcinoma

Derong Zeng1, Lin Ma2, Xinghan Li2, Weitao Hu2, Qi Liu3, Yongqiang Deng2,()   

  1. 1. Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China; Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China; School of Stomatology, Hangzhou Normal University, Hangzhou 311121, China
    2. Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China; Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
    3. Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China; International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518055, China
  • Received:2024-01-26 Published:2024-08-01
  • Corresponding author: Yongqiang Deng
  • Supported by:
    National Natural Science Foundation of China(82073007, 82373212); Basic and Applied Basic Research Foundation of Guangdong Province(2023A1515011945)
引用本文:

曾德荣, 马琳, 李星瀚, 胡伟涛, 刘琦, 邓永强. 多聚ADP核糖聚合酶1在口腔鳞状细胞癌精准诊疗中的作用机制及转化价值[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 269-275.

Derong Zeng, Lin Ma, Xinghan Li, Weitao Hu, Qi Liu, Yongqiang Deng. The importance of poly (ADP-ribose) polymerase 1 in precision medicine of oral squamous cell carcinoma[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(04): 269-275.

缺少有效分子靶点是阻碍口腔鳞状细胞癌(OSCC)精准诊疗进步的关键因素。多聚ADP核糖聚合酶1(PARP1)具有执行DNA损伤反应、处理氧化应激压力、抑制细胞程序性死亡等功能,是癌细胞应对生存压力的重要工具,也是适用于多种癌症治疗的分子靶点。研究显示,PARP1在OSCC诊疗中具有强大的潜力:一方面PARP1分子显像技术可用于OSCC的在体诊断,另一方面PARP抑制剂与放化疗联合应用在OSCC临床前测试中取得了良好的疗效。本文总结了PARP1在癌症治疗中的作用机制,重点阐述了PARP1应用于OSCC精准诊疗的研究进展,以促进PARP1靶点在OSCC中的临床应用转化。

The lack of effective molecular targets is a critical problem hindering the advance of precision medicine in oral squamous cell carcinoma (OSCC). Poly (ADP-ribose) polymerase 1 (PARP1) is a pleiotropic gene involved in several cellular functions, e.g., executing DNA damage response, processing oxidative stress, and inhibiting programmed cell death, making it an important tool for cancer cells to cope with survival pressures and a molecular target suitable for the treatment of various cancers. Recent research progress has shown that PARP1 has great potential in the diagnosis and treatment of OSCC. On one hand, molecular imaging techniques can be used for the in vivo diagnosis of PARP1 expression and distribution. On the other hand, the combined application of PARP inhibitors with radiochemotherapy has achieved great therapeutic effects in preclinical tests. This article summarized the mechanisms of PARP1 in cancer treatment, with a focus on elucidating the research progress in the precision medicine of OSCC using PARP1 as a molecular target, to promote the clinical application of PARP1 targeting in the treatment of OSCC.

图1 多聚ADP核糖聚合酶1(PARP1)蛋白结构域图解 ZN1、ZN2、ZN3:锌指结构域1、锌指结构域2、锌指结构域3;NLS:核定位信号区;BRCT:乳腺癌易感蛋白-羧基末端修饰域;WGR:富含色氨酸-甘氨酸-精氨酸域;HD:螺旋结构域;ART:ADP核糖转移酶域;ZN1、ZN3和WGR结构域协同结合DNA损伤位点,WGR结构域与ZN1、ZN3、HD、ART和DNA相互作用,是复合物的核心组分。
图2 多聚ADP核糖聚合酶1(PARP1)蛋白参与DNA损伤响应与修复 当DNA发生损伤,PARP1蛋白识别DNA损伤并结合于损伤位点,以β-烟酰胺腺嘌呤二核苷酸(NAD+)和ATP为底物,生成烟酰胺(NAM)和ADP核糖,ADP核糖与PARP1或其他DNA修复蛋白结合,进行多聚ADP-核糖基化修饰,参与修复碱基损伤、核苷酸损伤、DNA单链断裂和双链断裂。
图3 阻断多聚ADP核糖聚合酶1(PARP1)与同源重组(HR)修复途径诱导细胞合成致死效应图解 A:正常细胞出现DNA损伤时可通过2种主要DNA损伤修复途径PARP1和HR来修复DNA损伤,细胞得以存活;B:正常细胞的PARP1修复途径被药物阻断,HR修复途径发挥主要DNA损伤修复功能,细胞存活;C:正常细胞HR修复途径受损,PARP1修复途径发挥主要DNA损伤修复功能,细胞存活;D:当细胞的2条主要DNA损伤修复通路同时受损,DNA损伤无法及时被修复,细胞最终死亡。
[1]
Zhang SSun KZheng R,et al. Cancer incidence and mortality in China,2015[J]. JNCC20211(1):2-11. DOI:10.1016/j.jncc.2020.12.001.
[2]
Zheng RZhang SZeng H,et al. Cancer incidence and mortality in China,2016[J]. JNCC20222(1):1-9. DOI:10.1016/j.jncc.2022.02.002.
[3]
郑家伟,李金忠,钟来平,等.口腔鳞状细胞癌临床流行病学研究现状[J].中国口腔颌面外科杂志20075(2):83-90. DOI:10.3969/j.issn.1672-3244.2007.02.002.
[4]
陈新,徐文华,周健,等.口腔鳞状细胞癌现状[J].口腔医学201737(5):462-465. DOI:10.13591/j.cnki.kqyx.2017.05.018.
[5]
Sung HFerlay JSiegel RL,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin202171(3):209-249. DOI:10.3322/caac.21660.
[6]
胡伟涛,李星瀚,刘琦,等.微小核糖核酸-21在口腔鳞状细胞癌中作为生物学标志物的研究进展[J].中华口腔医学研究杂志(电子版)202216(5):328-332. DOI:10.3877/cma.j.issn.1674-1366.2022.05.011.
[7]
Johnson DEBurtness BLeemans CR,et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers20206(1):92. DOI:10.1038/s41572-020-00224-3.
[8]
Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature2015517(7536):576-582. DOI:10.1038/nature14129.
[9]
Curtin NJSzabo C. Poly(ADP-ribose)polymerase inhibition:Past,present and future[J]. Nat Rev Drug Discov202019(10):711-736. DOI:10.1038/s41573-020-0076-6.
[10]
Ray Chaudhuri ANussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling[J]. Nat Rev Mol Cell Biol201718(10):610-621. DOI:10.1038/nrm.2017.53.
[11]
Huang DKraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms[J]. Mol Cell202282(12):2315-2334. DOI:10.1016/j.molcel.2022.02.021.
[12]
Bai P. Biology of poly(ADP-ribose)polymerases:The factotums of cell maintenance[J]. Mol Cell201558(6):947-958. DOI:10.1016/j.molcel.2015.01.034.
[13]
Liu QGheorghiu LDrumm M,et al. PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53[J]. Oncogene201837(21):2793-2805. DOI:10.1038/s41388-018-0130-6.
[14]
Marcar LBardhan KGheorghiu L,et al. Acquired resistance of EGFR-mutated lung cancer to tyrosine kinase inhibitor treatment promotes PARP inhibitor sensitivity[J]. Cell Rep201927(12):3422-3432.e4. DOI:10.1016/j.celrep.2019.05.058.
[15]
Alemasova EELavrik OI. Poly(ADP-ribosyl)ation by PARP1:Reaction mechanism and regulatory proteins[J]. Nucleic Acids Res201947(8):3811-3827. DOI:10.1093/nar/gkz120.
[16]
Beck CRobert IReina-San-Martin B,et al. Poly(ADP-ribose)polymerases in double-strand break repair:Focus on PARP1,PARP2 and PARP3[J]. Exp Cell Res2014329(1):18-25. DOI:10.1016/j.yexcr.2014.07.003.
[17]
Demétrio de Souza França PKossatz SBrand C,et al. A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer[J]. Eur J Nucl Med Mol Imaging202148(11):3618-3630. DOI:10.1007/s00259-021-05372-6.
[18]
Kossatz SPirovano GDemétrio De Souza França P,et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral,oropharyngeal and oesophageal epithelial cancers[J]. Nat Biomed Eng20204(3):272-285. DOI:10.1038/s41551-020-0526-9.
[19]
Demétrio de Souza França PGuru NRoberts S,et al. Fluorescence-guided resection of tumors in mouse models of oral cancer[J]. Sci Rep202010(1):11175. DOI:10.1038/s41598-020-67958-8.
[20]
Kossatz SBrand CGutiontov S,et al. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent[J]. Sci Rep20166:21371. DOI:10.1038/srep21371.
[21]
Schöder HFrança PDSNakajima R,et al. Safety and feasibility of PARP1/2 imaging with 18F-PARPi in patients with head and neck cancer[J]. Clin Cancer Res202026(13):3110-3116. DOI:10.1158/1078-0432.CCR-19-3484.
[22]
Zhang XWang YAG,et al. Pan-cancer analysis of PARP1 alterations as biomarkers in the prediction of immunotherapeutic effects and the association of its expression levels and immunotherapy signatures[J]. Front Immunol202112:721030. DOI:10.3389/fimmu.2021.721030.
[23]
Nickoloff JASharma NTaylor L. Clustered DNA double-strand breaks:Biological effects and relevance to cancer radiotherapy [J]. Genes(Basel)202011(1):99. DOI:10.3390/genes11010099.
[24]
Grundy GJParsons JL. Base excision repair and its implications to cancer therapy[J]. Essays Biochem202064(5):831-843. DOI:10.1042/EBC20200013.
[25]
Tubbs ANussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer[J]. Cell2017168(4):644-656. DOI:10.1016/j.cell.2017.01.002.
[26]
Lindahl TBarnes DE. Repair of endogenous DNA damage[J]. Cold Spring Harb Symp Quant Biol200065:127-133. DOI:10.1101/sqb.2000.65.127.
[27]
Liu QLopez KMurnane J,et al. Misrepair in context:TGFβ regulation of DNA repair[J]. Front Oncol20199:799. DOI:10.3389/fonc.2019.00799.
[28]
Ye ZShi YLees-Miller SP,et al. Function and molecular mechanism of the DNA damage response in immunity and cancer immunotherapy[J]. Front Immunol202112:797880. DOI:10.3389/fimmu.2021.797880.
[29]
Dianov GLHübscher U. Mammalian base excision repair:The forgotten archangel[J]. Nucleic Acids Res201341(6):3483-3490. DOI:10.1093/nar/gkt076.
[30]
Schärer OD. Nucleotide excision repair in eukaryotes[J]. Cold Spring Harb Perspect Biol20135(10):a012609. DOI:10.1101/cshperspect.a012609.
[31]
Pines AVrouwe MGMarteijn JA,et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1[J]. J Cell Biol2012199(2):235-249. DOI:10.1083/jcb.201112132.
[32]
Fisher AEHochegger HTakeda S,et al. Poly(ADP-ribose)polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose)glycohydrolase[J]. Mol Cell Biol200727(15):5597-5605. DOI:10.1128/MCB.02248-06.
[33]
Caldecott KW. XRCC1 protein;Form and function[J]. DNA Repair(Amst)201981:102664. DOI:10.1016/j.dnarep.2019.102664.
[34]
Hoch NCHanzlikova HRulten SL,et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia[J]. Nature2017541(7635):87-91. DOI:10.1038/nature20790.
[35]
Liu QZuo NLi X,et al. Novel insights into DNA damage repair defects in HPV-positive head and neck squamous cell carcinoma:From the molecular basis to therapeutic opportunities [J]. Genome Instability & Disease20234(5):255-265. DOI:10.1007/s42764-023-00109-1.
[36]
Haince JFKozlov SDawson VL,et al. Ataxia telangiectasia mutated(ATM)signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents[J]. J Biol Chem2007282(22):16441-16453. DOI:10.1074/jbc.M608406200.
[37]
Zuo NMa LLiu T,et al. Human papillomavirus associated XPF deficiency increases alternative end joining and cisplatin sensitivity in head and neck squamous cell carcinoma[J]. Oral Oncol2023140:106367. DOI:10.1016/j.oraloncology.2023.106367.
[38]
Setton JZinda MRiaz N,et al. Synthetic lethality in cancer therapeutics:The next generation[J]. Cancer Discov202111(7):1626-1635. DOI:10.1158/2159-8290.Cd-20-1503.
[39]
Slade D. PARP and PARG inhibitors in cancer treatment[J]. Genes Dev202034(5/6):360-394. DOI:10.1101/gad.334516.119.
[40]
Shi ZChen BHan X,et al. Genomic and molecular landscape of homologous recombination deficiency across multiple cancer types[J]. Sci Rep202313(1):8899. DOI:10.1038/s41598-023-35092-w.
[41]
Chung CHGuthrie VBMasica DL,et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing[J]. Ann Oncol201526(6):1216-1223. DOI:10.1093/annonc/mdv109.
[42]
Seiwert TYZuo ZKeck MK,et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas[J]. Clin Cancer Res201521(3):632-641. DOI:10.1158/1078-0432.Ccr-13-3310.
[43]
Hernandez ALWang YSomerset HL,et al. Inter- and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinomas[J]. Mol Carcinog201958(5):666-673. DOI:10.1002/mc.22958.
[44]
Hernandez ALYoung CDBian L,et al. PARP inhibition enhances radiotherapy of smad4-deficient human head and neck squamous cell carcinomas in experimental models[J]. Clin Cancer Res202026(12):3058-3070. DOI:10.1158/1078-0432.Ccr-19-0514.
[45]
Warnakulasuriya SKerr AR. Oral cancer screening:Past,present,and future[J]. J Dent Res2021100(12):1313-1320. DOI:10.1177/00220345211014795.
[46]
Puentes LNMakvandi MMach RH. Molecular imaging:PARP-1 and beyond[J]. J Nucl Med202162(6):765-770. DOI:10.2967/jnumed.120.243287.
[47]
Wang FGouttia OGWang L,et al. PARP1 upregulation in recurrent oral cancer and treatment resistance[J]. Front Cell Dev Biol20219:804962. DOI:10.3389/fcell.2021.804962.
[48]
Liu QMa LJones T,et al. Subjugation of TGFβ signaling by human papilloma virus in head and neck squamous cell carcinoma shifts DNA repair from homologous recombination to alternative end joining[J]. Clin Cancer Res201824(23):6001-6014. DOI:10.1158/1078-0432.CCR-18-1346.
[49]
Wang XLiu WLi K,et al. PET imaging of PARP expression using 68Ga-labelled inhibitors[J]. Eur J Nucl Med Mol Imaging202350(9):2606-2620. DOI:10.1007/s00259-023-06249-6.
[50]
Ambur Sankaranarayanan RKossatz SWeber W,et al. Advancements in PARP1 targeted nuclear imaging and theranostic probes[J]. J Clin Med20209(7):2130. DOI:10.3390/jcm9072130.
[51]
Carney BKossatz S Reiner T. Molecular imaging of PARP[J]. J Nucl Med201758(7):1025-1030. DOI:10.2967/jnumed.117.189936.
[52]
Demétrio de Souza França PRoberts SKossatz S,et al. Fluorine-18 labeled poly(ADP-ribose)polymerase1 inhibitor as a potential alternative to 2-deoxy-2-[18F] fluoro-d-glucose positron emission tomography in oral cancer imaging[J]. Nucl Med Biol202084-85:80-87. DOI:10.1016/j.nucmedbio.2020.01.004.
[53]
Moutafi MEconomopoulou PRimm D,et al. PARP inhibitors in head and neck cancer:Molecular mechanisms,preclinical and clinical data[J]. Oral Oncol2021117:105292. DOI:10.1016/j.oraloncology.2021.105292.
[54]
Moutafi MKoliou GAPapaxoinis G,et al. Phase Ⅱ window study of olaparib alone or with cisplatin or durvalumab in operable head and neck cancer[J]. Cancer Res Commun20233(8):1514-1523. DOI:10.1158/2767-9764.CRC-23-0051.
[55]
Liu QWang MKern AM,et al. Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers[J]. Mol Cancer Res201513(4):713-720. DOI:10.1158/1541-7786.MCR-14-0570.
[56]
Zhou CFabbrizi MRHughes JR,et al. Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma[J]. Front Oncol202212:940377. DOI:10.3389/fonc.2022.940377.
[57]
Wurster SHennes FParplys AC,et al. PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response[J]. Oncotarget20167(9):9732-9741. DOI:10.18632/oncotarget.6947.
[58]
Verhagen CVde Haan RHageman F,et al. Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose,the radiation dose and the integrity of the homologous recombination pathway of tumor cells[J]. Radiother Oncol2015116(3):358-365. DOI:10.1016/j.radonc.2015.03.028.
[59]
Wang LCao JWang X,et al. Proton and photon radiosensitization effects of niraparib,a PARP-1/-2 inhibitor,on human head and neck cancer cells[J]. Head Neck202042(9):2244-2256. DOI:10.1002/hed.26155.
[60]
Frederick BAGupta RAtilano-Roque A,et al. Combined EGFR1 and PARP1 inhibition enhances the effect of radiation in head and neck squamous cell carcinoma models[J]. Radiat Res2020194(5):519-531. DOI:10.1667/RR15480.1.
[61]
Zeng LBoggs DHXing C,et al. Combining PARP and DNA-PK inhibitors with irradiation inhibits HPV-negative head and neck cancer squamous carcinoma growth[J]. Front Genet202011:1036. DOI:10.3389/fgene.2020.01036.
[62]
Karam SDReddy KBlatchford PJ,et al. Final report of a phase I trial of olaparib with cetuximab and radiation for heavy smoker patients with locally advanced head and neck cancer[J]. Clin Cancer Res201824(20):4949-4959. DOI:10.1158/1078-0432.Ccr-18-0467.
[63]
Navran AAl-Mamgani AElzinga H,et al. Phase I feasibility study of Olaparib in combination with loco-regional radiotherapy in head and neck squamous cell carcinoma[J]. Clin Transl Radiat Oncol202444:100698. DOI:10.1016/j.ctro.2023.100698.
[64]
de Haan Rvan Werkhoven Evan den Heuvel MM,et al. Study protocols of three parallel phase 1 trials combining radical radiotherapy with the PARP inhibitor olaparib[J]. BMC Cancer201919(1):901. DOI:10.1186/s12885-019-6121-3.
[65]
Jelinek MJFoster NRZoroufy AJ,et al. A phase I trial adding poly(ADP-ribose)polymerase inhibitor veliparib to induction carboplatin-paclitaxel in patients with head and neck squamous cell carcinoma:Alliance A091101[J]. Oral Oncol2021114:105171. DOI:10.1016/j.oraloncology.2020.105171.
[66]
Yin ZXHang WLiu G,et al. PARP-1 inhibitors sensitize HNSCC cells to APR-246 by inactivation of thioredoxin reductase 1(TrxR1)and promotion of ROS accumulation[J]. Oncotarget20189(2):1885-1897. DOI:10.18632/oncotarget.21277.
[67]
Murai JHuang SYDas BB,et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors[J]. Cancer Res201272(21):5588-5599. DOI:10.1158/0008-5472.CAN-12-2753.
[68]
Spiegel JOvan Houten BDurrant JD. PARP1:Structural insights and pharmacological targets for inhibition[J]. DNA Repair(Amst)2021103:103125. DOI:10.1016/j.dnarep.2021.103125.
[69]
Ang KKHarris JWheeler R,et al. Human papillomavirus and survival of patients with oropharyngeal cancer[J]. N Engl J Med2010363(1):24-35. DOI:10.1056/NEJMoa0912217.
[70]
Liu TMa LSong L,et al. CENPM upregulation by E5 oncoprotein of human papillomavirus promotes radiosensitivity in head and neck squamous cell carcinoma[J]. Oral Oncol2022129:105858. DOI:10.1016/j.oraloncology.2022.105858.
[71]
Lassen PEriksen JGHamilton-Dutoit S,et al. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck[J]. J Clin Oncol200927(12):1992-1998. DOI:10.1200/jco.2008.20.2853.
[72]
Huang ZChen YChen R,et al. HPV enhances HNSCC chemosensitization by inhibiting SERPINB3 expression to disrupt the fanconi anemia pathway[J]. Adv Sci(Weinh)202210(1):e2202437. DOI:10.1002/advs.202202437.
[73]
Citro SMiccolo CMedda A,et al. HPV-mediated regulation of SMAD4 modulates the DNA damage response in head and neck cancer[J]. J Exp Clin Cancer Res202241(1):59. DOI:10.1186/s13046-022-02258-9.
[74]
Kocher SZech HBKrug L,et al. A lack of effectiveness in the ATM-orchestrated DNA damage response contributes to the DNA repair defect of HPV-positive head and neck cancer cells[J]. Front Oncol202212:765968. DOI:10.3389/fonc.2022.765968.
[75]
Zech HBBerger JMansour WY,et al. Patient derived ex vivo tissue slice cultures demonstrate a profound DNA double-strand break repair defect in HPV-positive oropharyngeal head and neck cancer[J]. Radiother Oncol2022168:138-146. DOI:10.1016/j.radonc.2022.01.017.
[76]
Hintelmann KBerenz TKriegs M,et al. Dual inhibition of PARP and the intra-S/G2 cell cycle checkpoints results in highly effective radiosensitization of HPV-positive HNSCC cells[J]. Front Oncol202111:683688. DOI:10.3389/fonc.2021.683688.
[77]
Weaver ANCooper TSRodriguez M,et al. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP)inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma[J]. Oncotarget20156(29):26995-27007. DOI:10.18632/oncotarget.4863.
[78]
Lombardi AJHoskins EEFoglesong GD,et al. Acquisition of relative interstrand crosslinker resistance and PARP inhibitor sensitivity in fanconi anemia head and neck cancers[J]. Clin Cancer Res201521(8):1962-1972. DOI:10.1158/1078-0432.CCR-14-2616.
[79]
Güster JDWeissleder SVBusch CJ,et al. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines[J]. Radiother Oncol2014113(3):345-351. DOI:10.1016/j.radonc.2014.10.011.
[1] 王昭蕊, 裴静. 乳腺组织定位标记夹在乳腺外科中的应用[J]. 中华乳腺病杂志(电子版), 2020, 14(05): 312-316.
[2] 李恒宇, 盛湲. 何谓精准:浅谈乳腺癌基因检测[J]. 中华乳腺病杂志(电子版), 2018, 12(06): 329-334.
[3] 陈荟竹, 郭应坤, 汪昕蓉, 宁刚, 陈锡建. 上皮性卵巢癌"二元论模型"的分子生物学研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 394-402.
[4] 王璐, 王宇, 曾俊, 陈伟, 江华. 机器学习与多组学结合推动精准营养的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 540-544.
[5] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[6] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[7] 林道炜, 韩智晓, 朱晓秋, 黄志权, 徐辉. 白蛋白支持治疗在老年口腔癌患者围手术期的应用:一项回顾性研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(06): 361-366.
[8] 田亚, 吴美龙, 冯晓彬. 人工智能在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 258-262.
[9] 李玉民, 陈昊, 冯泽东. 原发性肝癌外科治疗[J]. 中华肝脏外科手术学电子杂志, 2021, 10(04): 343-347.
[10] 张赛, 徐超, 符锋. 多途径整合在颅脑创伤领域的新观点[J]. 中华神经创伤外科电子杂志, 2019, 05(03): 129-133.
[11] 詹启敏. 健康中国发展背景下的科技创新[J]. 中华神经创伤外科电子杂志, 2018, 04(04): 193-196.
[12] 张璐, 李响, 夏世宏, 童琦, 孙英杰, 马雪丽. 脓毒症休克的诊治在精准医学时代下的发展及临床应用[J]. 中华重症医学电子杂志, 2021, 07(02): 169-173.
[13] 周良辅. 脑膜瘤的精准医学现状[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 193-195.
[14] 胡蓉, 李梅芳, 王磊, 贺艳杰, 李晓丹, 李玉华. 精准诊断在内科学血液肿瘤疾病理论教学中的应用[J]. 中华诊断学电子杂志, 2023, 11(01): 67-69.
[15] 李国仁. 精准医学时代我国食管癌筛查和早期诊断的研究进展[J]. 中华胸部外科电子杂志, 2020, 07(02): 109-115.
阅读次数
全文


摘要