[1] |
Duncan HF,Kirkevang LL,Peters OA,et al. Treatment of pulpal and apical disease:The European Society of Endodontology(ESE)S3-level clinical practice guideline[J]. Int Endod J,2023,56(Suppl 3):238-295.DOI:10.1111/iej.13974.
|
[2] |
Tibúrcio-Machado CS,Michelon C,Zanatta FB,et al. The global prevalence of apical periodontitis:A systematic review and meta-analysis[J].Int Endod J,2021,54(5):712-735.DOI:10.1111/iej.13467.
|
[3] |
姜葳,梁景平. 牙髓根尖周病的诊断技术进展概述[J]. 中华口腔医学杂志,2022,57(3):227-232. DOI:10.3760/cma.j.cn112144-20211111-00497.
|
[4] |
Aminoshariae A,Kulild J,Nagendrababu V.Artificial intelligence in endodontics:Current applications and future directions[J]. J Endod,2021,47(9):1352-1357. DOI:10.1016/j.joen.2021.06.003.
|
[5] |
Alzubaidi L,Zhang J,Humaidi AJ,et al. Review of deep learning:Concepts,CNN architectures,challenges,applications,future directions[J]. J Big Data,2021,8(1):53. DOI:10.1186/s40537-021-00444-8.
|
[6] |
汪林,郭亚霖,刘洪臣. 人工智能在牙体牙髓病学中的应用[J]. 中华老年口腔医学杂志,2022,20(6):321-326. DOI:10.19749/j.cn.cjgd.1672-2973.2022.06.001.
|
[7] |
慕创创,李刚.基于神经网络的深度学习在医学影像中的研究进展[J]. 中华口腔医学杂志,2019,54(7):492-497. DOI:10.3760/cma.j.issn.1002-0098.2019.07.011.
|
[8] |
张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报,2019,42(3):453-482.DOI:10.11897/SP.J.1016.2019.00453.
|
[9] |
卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理,2016,31(1):1-17. DOI:10.16337/j.1004-9037.2016.01.001.
|
[10] |
Stahlschmidt SR,Ulfenborg B,Synnergren J. Multimodal deep learning for biomedical data fusion:A review [J]. Brief Bioinform,2022,23(2):bbab569.DOI:10.1093/bib/bbab569.
|
[11] |
Zhou HY,Yu Y,Wang C,et al. A transformer - based representation - learning model with unified processing of multimodal input for clinical diagnostics[J]. Nat Biomed Eng,2023,7(6):743-755.DOI:10.1038/s41551-023-01045-x.
|
[12] |
Qian X,Pei J,Zheng H,et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning[J].Nat Biomed Eng,2021,5(6):522-532.DOI:10.1038/s41551-021-00711-2.
|
[13] |
Kumar A,Fulham M,Feng D,et al. Co-learning feature fusion maps from PET-CT images of lung cancer[J]. IEEE Trans Med Imaging,2020,39(1):204 - 217. DOI:10.1109/TMI.2019.2923601.
|
[14] |
张祖燕.口腔颌面医学影像诊断学[M].7 版.北京:人民卫生出版社,2020.
|
[15] |
史瑞棠,侯本祥.牙髓钙化的病因、诊断和治疗策略[J].中华口腔医学杂志,2022,57(3):220-226. DOI:10.3760/cma.j.cn112144-20211101-00481.
|
[16] |
Yuce F,Öziç MÜ,Tassoker M.Detection of pulpal calcifications on bite-wing radiographs using deep learning[J]. Clin Oral Investig,2023,27(6):2679-2689. DOI:10.1007/s00784-022-04839-6.
|
[17] |
Altındağ A,Bahrilli S,Çelik Ö,et al. The detection of pulp stones with automatic deep learning in panoramic radiographies:An AI pilot study[J]. Diagnostics(Basel),2024,14(9):890.DOI:10.3390/diagnostics14090890.
|
[18] |
Ye L,Li S,Li C,et al. Pulp calcification identification on cone beam computed tomography:An artificial intelligence pilot study[J].BMC Oral Health,2024,24(1):1132.DOI:10.1186/s12903-024-04922-2.
|
[19] |
Zheng L,Wang H,Mei L,et al. Artificial intelligence in digital cariology:A new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks[J].Ann Transl Med,2021,9(9):763.DOI:10.21037/atm-21-119.
|
[20] |
齐帅,张旗.卷积神经网络在牙体牙髓病影像诊断中的研究和应用[J]. 口腔医学研究,2023,39(11):960-964. DOI:10.13701/j.cnki.kqyxyj.2023.11.004.
|
[21] |
Hilmi A,Patel S,Mirza K,et al. Efficacy of imaging techniques for the diagnosis of apical periodontitis:A systematic review[J].Int Endod J,2023,56(Suppl 3):326-339. DOI:10.1111/iej.13921.
|
[22] |
Ekert T,Krois J,Meinhold L,et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod,2019,45(7):917-922.DOI:10.1016/j.joen.2019.03.016.
|
[23] |
Sadr S,Mohammad-Rahimi H,Motamedian SR,et al. Deep learning for detection of periapical radiolucent lesions:A systematic review and meta-analysis of diagnostic test accuracy[J]. J Endod,2023,49(3):248-261.e3. DOI:10.1016/j.joen.2022.12.007.
|
[24] |
Pauwels R, Brasil DM, Yamasaki MC, et al. Artificial intelligence for detection of periapical lesions on intraoral radiographs:Comparison between convolutional neural networks and human observers[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2021,131(5):610-616. DOI:10.1016/j.oooo.2021.01.018.
|
[25] |
Moidu NP,Sharma S,Chawla A,et al. Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system[J]. Clin Oral Investig,2022,26(1):651-658.DOI:10.1007/s00784-021-04043-y.
|
[26] |
Hamdan MH,Tuzova L,Mol A,et al. The effect of a deeplearning tool on dentists' performances in detecting apical radiolucencies on periapical radiographs[J]. Dentomaxillofac Radiol,2022,51(7):20220122.DOI:10.1259/dmfr.20220122.
|
[27] |
Ver Berne J,Saadi SB,Politis C,et al. A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas[J]. J Dent,2023,135:104581.DOI:10.1016/j.jdent.2023.104581.
|
[28] |
Endres MG,Hillen F,Salloumis M,et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs[J]. Diagnostics(Basel),2020,10(6):430. DOI:10.3390/diagnostics10060430.
|
[29] |
Bayrakdar IS,Orhan K,Celik O,et al. A U-net approach to apical lesion segmentation on panoramic radiographs[J].Biomed Res Int,2022:7035367.DOI:10.1155/2022/7035367.
|
[30] |
Orhan K,Bayrakdar IS,Ezhov M,et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone - beam computed tomography scans[J].Int Endod J,2020,53(5):680-689.DOI:10.1111/iej.13265.
|
[31] |
Setzer FC,Shi KJ,Zhang Z,et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images[J]. J Endod,2020,46(7):987-993.DOI:10.1016/j.joen.2020.03.025.
|
[32] |
钱军,马芮,曲妍,等.人工智能在锥形束计算机断层扫描影像中识别慢性根尖周炎根尖区病变的应用[J].华西口腔医学杂志,2022,40(5):576-581.DOI:10.7518/hxkq.2022.05.011.
|
[33] |
Fu WT,Zhu QK,Li N,et al. Clinically oriented CBCT periapical lesion evaluation via 3D CNN algorithm[J]. J Dent Res,2024,103(1):5-12.DOI:10.1177/00220345231201793.
|
[34] |
Lin X,Fu Y,Ren G,et al. Micro-computed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography[J]. J Endod,2021,47(12):1933-1941.DOI:10.1016/j.joen.2021.09.001.
|
[35] |
Polizzi A,Quinzi V,Ronsivalle V,et al. Tooth automatic segmentation from CBCT images:A systematic review[J]. Clin Oral Investig,2023,27(7):3363-3378. DOI:10.1007/s00784-023-05048-5.
|
[36] |
Xiang B,Lu J,Yu J. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence:A systematic review and meta-analysis[J]. J Dent,2024,146:105064.DOI:10.1016/j.jdent.2024.105064.
|
[37] |
Wang Y,Xia W,Yan Z,et al.Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning[J].Med Image Anal,2023,85:102750.DOI:10.1016/j.media.2023.102750.
|
[38] |
Li S,Du Y,Ye L,et al. Teeth and root canals segmentation using zxyformer with uncertainty guidance and weight transfer[C]. 2023 IEEE 20th International Symposium on Biomedical Imaging(ISBI),Cartagena,Colombia,2023. DOI:10.1109/ISBI53787.2023.10230644.
|
[39] |
Mallishery S,Chhatpar P,Banga KS,et al.The precision of case difficulty and referral decisions: An innovative automated approach[J].Clin Oral Investig,2020,24(6):1909-1915.DOI:10.1007/s00784-019-03050-4.
|
[40] |
Fernandes M,de Ataide I,Wagle R. C - shaped root canal configuration:A review of literature[J]. J Conserv Dent,2014,17(4):312-319.
|
[41] |
Jeon SJ,Yun JP,Yeom HG,et al.Deep-learning for predicting Cshaped canals in mandibular second molars on panoramic radiographs[J]. Dentomaxillofac Radiol,2021,50(5):20200513.DOI:10.1259/dmfr.20200513.
|
[42] |
Zhang L,Xu F,Li Y,et al. A lightweight convolutional neural network model with receptive field block for C-shaped root canal detection in mandibular second molars[J]. Sci Rep,2022,12(1):17373.DOI:10.1038/s41598-022-20411-4.
|
[43] |
Yang S,Lee H,Jang B,et al. Development and validation of a visually explainable deep learning model for classification of Cshaped canals of the mandibular second molars in periapical and panoramic dental radiographs[J]. J Endod,2022,48(7):914-921.DOI:10.1016/j.joen.2022.04.007.
|
[44] |
Sherwood AA,Sherwood AI,Setzer FC,et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone - beam computed tomography[J]. J Endod,2021,47(12):1907-1916. DOI:10.1016/j.joen.2021.09.009.
|
[45] |
Fan B,Cheung GS,Fan M,et al. C-shaped canal system in mandibular second molars:Part Ⅱ—Radiographic features[J].J Endod,2004,30(12):904-908. DOI:10.1097/01.don.0000 136206.73115.93.
|
[46] |
Lee J,Seo H,Choi YJ,et al. An endodontic forecasting model based on the analysis of preoperative dental radiographs:A pilot study on an endodontic predictive deep neural network[J]. J Endod,2023,49(6):710-719.DOI:10.1016/j.joen.2023.03.015.
|
[47] |
Xu TK,Zhu Y,Peng L,et al. Artificial intelligence assisted identification of therapy history from periapical films for dental root canal[J]. Displays,2022,71:102119. DOI:10.1016/j.displa.2021.102119.
|
[48] |
Buyuk C,Arican Alpay B,Er F. Detection of the separated root canal instrument on panoramic radiograph:A comparison of LSTM and CNN deep learning methods[J]. Dentomaxillofac Radiol,2023,52(3):20220209.DOI:10.1259/dmfr.20220209.
|
[49] |
Özbay Y,Kazangirler BY,Özcan C,et al. Detection of the separated endodontic instrument on periapical radiographs using a deep learning-based convolutional neural network algorithm[J]. Aust Endod J,2024,50(1):131-139. DOI:10.1111/aej.12822.
|
[50] |
Calazans MAA,Pontual ADA,Pontual MLDA,et al. A system for automatic classification of endodontic treatment quality in CBCT[J]. Clin Oral Investig,2024,28(4):223. DOI:10.1007/s00784-024-05599-1.
|
[51] |
Albitar L,Zhao T,Huang C,et al. Artificial intelligence(AI)for detection and localization of unobturated second mesial buccal(MB2)canals in cone-beam computed tomography(CBCT)[J].Diagnostics,2022,12(12):3214. DOI:10.3390/diagnostics 12123214.
|
[52] |
Usmani UA,Happonen A,Watada J. Enhancing medical diagnosis through deep learning and machine learning approaches in image analysis[C]//Arai K,et al,eds. Intelligent Systems and Applications.Springer,Cham,2024:449-468.DOI:10.1007/978-3-031-47718-8_30.
|