切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (06) : 351 -356. doi: 10.3877/cma.j.issn.1674-1366.2024.06.001

青年编委专栏

深度学习在牙髓根尖周病临床诊疗中的应用
叶莉1, 杜宇1,()   
  1. 1.中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2024-05-04 出版日期:2024-12-01
  • 通信作者: 杜宇
  • 基金资助:
    广东省自然科学基金(2024A1515012977)中山大学大学生创新训练项目(20240555)

Application of deep learning in clinical diagnosis and treatment of pulpal and periapical diseases

Li Ye1, Yu Du1,()   

  1. 1.Hospital of Stomatology,Guanghua School of Stomatology,Sun Yat-sen University,Guangdong Provincial Key Laboratory of Stomatology,Guangzhou 510055,China
  • Received:2024-05-04 Published:2024-12-01
  • Corresponding author: Yu Du
引用本文:

叶莉, 杜宇. 深度学习在牙髓根尖周病临床诊疗中的应用[J]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 351-356.

Li Ye, Yu Du. Application of deep learning in clinical diagnosis and treatment of pulpal and periapical diseases[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(06): 351-356.

近年来,人工智能助力临床医学诊疗模式发生重大改变。深度学习(DL)作为人工智能的重要分支,在口腔医学领域包括牙髓根尖周病的诊断和治疗方面展现了巨大潜力。DL 模型通过发现并学习数据中的规律,协助口腔医师实现自动化疾病定位、诊断和治疗预后预测等。本文旨在对DL在牙髓根尖周病临床诊疗中的应用进行总结和展望,以期为临床提供参考。

Artificial intelligence has significantly reshaped clinical diagnostic and treatment models,with deep learning(DL)emerging as a key contributor. In the field of dentistry, DL has demonstrated remarkable potential,particularly in the diagnosis and treatment of pulpal and periapical diseases. By recognizing and learning patterns within data, DL models assist dentists in automating disease localization,diagnosis,and prognosis prediction. This article seeks to review the application of DL in the clinical management of pulpal and periapical diseases,offering insights that may serve as a useful reference for clinical practice.

[1]
Duncan HF,Kirkevang LL,Peters OA,et al. Treatment of pulpal and apical disease:The European Society of Endodontology(ESE)S3-level clinical practice guideline[J]. Int Endod J,2023,56(Suppl 3):238-295.DOI:10.1111/iej.13974.
[2]
Tibúrcio-Machado CS,Michelon C,Zanatta FB,et al. The global prevalence of apical periodontitis:A systematic review and meta-analysis[J].Int Endod J,2021,54(5):712-735.DOI:10.1111/iej.13467.
[3]
姜葳,梁景平. 牙髓根尖周病的诊断技术进展概述[J]. 中华口腔医学杂志,2022,57(3):227-232. DOI:10.3760/cma.j.cn112144-20211111-00497.
[4]
Aminoshariae A,Kulild J,Nagendrababu V.Artificial intelligence in endodontics:Current applications and future directions[J]. J Endod,2021,47(9):1352-1357. DOI:10.1016/j.joen.2021.06.003.
[5]
Alzubaidi L,Zhang J,Humaidi AJ,et al. Review of deep learning:Concepts,CNN architectures,challenges,applications,future directions[J]. J Big Data,2021,8(1):53. DOI:10.1186/s40537-021-00444-8.
[6]
汪林,郭亚霖,刘洪臣. 人工智能在牙体牙髓病学中的应用[J]. 中华老年口腔医学杂志,2022,20(6):321-326. DOI:10.19749/j.cn.cjgd.1672-2973.2022.06.001.
[7]
慕创创,李刚.基于神经网络的深度学习在医学影像中的研究进展[J]. 中华口腔医学杂志,2019,54(7):492-497. DOI:10.3760/cma.j.issn.1002-0098.2019.07.011.
[8]
张顺,龚怡宏,王进军.深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报,2019,42(3):453-482.DOI:10.11897/SP.J.1016.2019.00453.
[9]
卢宏涛,张秦川.深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理,2016,31(1):1-17. DOI:10.16337/j.1004-9037.2016.01.001.
[10]
Stahlschmidt SR,Ulfenborg B,Synnergren J. Multimodal deep learning for biomedical data fusion:A review [J]. Brief Bioinform,2022,23(2):bbab569.DOI:10.1093/bib/bbab569.
[11]
Zhou HY,Yu Y,Wang C,et al. A transformer - based representation - learning model with unified processing of multimodal input for clinical diagnostics[J]. Nat Biomed Eng,2023,7(6):743-755.DOI:10.1038/s41551-023-01045-x.
[12]
Qian X,Pei J,Zheng H,et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning[J].Nat Biomed Eng,2021,5(6):522-532.DOI:10.1038/s41551-021-00711-2.
[13]
Kumar A,Fulham M,Feng D,et al. Co-learning feature fusion maps from PET-CT images of lung cancer[J]. IEEE Trans Med Imaging,2020,39(1):204 - 217. DOI:10.1109/TMI.2019.2923601.
[14]
张祖燕.口腔颌面医学影像诊断学[M].7 版.北京:人民卫生出版社,2020.
[15]
史瑞棠,侯本祥.牙髓钙化的病因、诊断和治疗策略[J].中华口腔医学杂志,2022,57(3):220-226. DOI:10.3760/cma.j.cn112144-20211101-00481.
[16]
Yuce F,Öziç MÜ,Tassoker M.Detection of pulpal calcifications on bite-wing radiographs using deep learning[J]. Clin Oral Investig,2023,27(6):2679-2689. DOI:10.1007/s00784-022-04839-6.
[17]
Altındağ A,Bahrilli S,Çelik Ö,et al. The detection of pulp stones with automatic deep learning in panoramic radiographies:An AI pilot study[J]. Diagnostics(Basel),2024,14(9):890.DOI:10.3390/diagnostics14090890.
[18]
Ye L,Li S,Li C,et al. Pulp calcification identification on cone beam computed tomography:An artificial intelligence pilot study[J].BMC Oral Health,2024,24(1):1132.DOI:10.1186/s12903-024-04922-2.
[19]
Zheng L,Wang H,Mei L,et al. Artificial intelligence in digital cariology:A new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks[J].Ann Transl Med,2021,9(9):763.DOI:10.21037/atm-21-119.
[20]
齐帅,张旗.卷积神经网络在牙体牙髓病影像诊断中的研究和应用[J]. 口腔医学研究,2023,39(11):960-964. DOI:10.13701/j.cnki.kqyxyj.2023.11.004.
[21]
Hilmi A,Patel S,Mirza K,et al. Efficacy of imaging techniques for the diagnosis of apical periodontitis:A systematic review[J].Int Endod J,2023,56(Suppl 3):326-339. DOI:10.1111/iej.13921.
[22]
Ekert T,Krois J,Meinhold L,et al. Deep learning for the radiographic detection of apical lesions[J]. J Endod,2019,45(7):917-922.DOI:10.1016/j.joen.2019.03.016.
[23]
Sadr S,Mohammad-Rahimi H,Motamedian SR,et al. Deep learning for detection of periapical radiolucent lesions:A systematic review and meta-analysis of diagnostic test accuracy[J]. J Endod,2023,49(3):248-261.e3. DOI:10.1016/j.joen.2022.12.007.
[24]
Pauwels R, Brasil DM, Yamasaki MC, et al. Artificial intelligence for detection of periapical lesions on intraoral radiographs:Comparison between convolutional neural networks and human observers[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2021,131(5):610-616. DOI:10.1016/j.oooo.2021.01.018.
[25]
Moidu NP,Sharma S,Chawla A,et al. Deep learning for categorization of endodontic lesion based on radiographic periapical index scoring system[J]. Clin Oral Investig,2022,26(1):651-658.DOI:10.1007/s00784-021-04043-y.
[26]
Hamdan MH,Tuzova L,Mol A,et al. The effect of a deeplearning tool on dentists' performances in detecting apical radiolucencies on periapical radiographs[J]. Dentomaxillofac Radiol,2022,51(7):20220122.DOI:10.1259/dmfr.20220122.
[27]
Ver Berne J,Saadi SB,Politis C,et al. A deep learning approach for radiological detection and classification of radicular cysts and periapical granulomas[J]. J Dent,2023,135:104581.DOI:10.1016/j.jdent.2023.104581.
[28]
Endres MG,Hillen F,Salloumis M,et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs[J]. Diagnostics(Basel),2020,10(6):430. DOI:10.3390/diagnostics10060430.
[29]
Bayrakdar IS,Orhan K,Celik O,et al. A U-net approach to apical lesion segmentation on panoramic radiographs[J].Biomed Res Int,2022:7035367.DOI:10.1155/2022/7035367.
[30]
Orhan K,Bayrakdar IS,Ezhov M,et al. Evaluation of artificial intelligence for detecting periapical pathosis on cone - beam computed tomography scans[J].Int Endod J,2020,53(5):680-689.DOI:10.1111/iej.13265.
[31]
Setzer FC,Shi KJ,Zhang Z,et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images[J]. J Endod,2020,46(7):987-993.DOI:10.1016/j.joen.2020.03.025.
[32]
钱军,马芮,曲妍,等.人工智能在锥形束计算机断层扫描影像中识别慢性根尖周炎根尖区病变的应用[J].华西口腔医学杂志,2022,40(5):576-581.DOI:10.7518/hxkq.2022.05.011.
[33]
Fu WT,Zhu QK,Li N,et al. Clinically oriented CBCT periapical lesion evaluation via 3D CNN algorithm[J]. J Dent Res,2024,103(1):5-12.DOI:10.1177/00220345231201793.
[34]
Lin X,Fu Y,Ren G,et al. Micro-computed tomography-guided artificial intelligence for pulp cavity and tooth segmentation on cone-beam computed tomography[J]. J Endod,2021,47(12):1933-1941.DOI:10.1016/j.joen.2021.09.001.
[35]
Polizzi A,Quinzi V,Ronsivalle V,et al. Tooth automatic segmentation from CBCT images:A systematic review[J]. Clin Oral Investig,2023,27(7):3363-3378. DOI:10.1007/s00784-023-05048-5.
[36]
Xiang B,Lu J,Yu J. Evaluating tooth segmentation accuracy and time efficiency in CBCT images using artificial intelligence:A systematic review and meta-analysis[J]. J Dent,2024,146:105064.DOI:10.1016/j.jdent.2024.105064.
[37]
Wang Y,Xia W,Yan Z,et al.Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning[J].Med Image Anal,2023,85:102750.DOI:10.1016/j.media.2023.102750.
[38]
Li S,Du Y,Ye L,et al. Teeth and root canals segmentation using zxyformer with uncertainty guidance and weight transfer[C]. 2023 IEEE 20th International Symposium on Biomedical Imaging(ISBI),Cartagena,Colombia,2023. DOI:10.1109/ISBI53787.2023.10230644.
[39]
Mallishery S,Chhatpar P,Banga KS,et al.The precision of case difficulty and referral decisions: An innovative automated approach[J].Clin Oral Investig,2020,24(6):1909-1915.DOI:10.1007/s00784-019-03050-4.
[40]
Fernandes M,de Ataide I,Wagle R. C - shaped root canal configuration:A review of literature[J]. J Conserv Dent,2014,17(4):312-319.
[41]
Jeon SJ,Yun JP,Yeom HG,et al.Deep-learning for predicting Cshaped canals in mandibular second molars on panoramic radiographs[J]. Dentomaxillofac Radiol,2021,50(5):20200513.DOI:10.1259/dmfr.20200513.
[42]
Zhang L,Xu F,Li Y,et al. A lightweight convolutional neural network model with receptive field block for C-shaped root canal detection in mandibular second molars[J]. Sci Rep,2022,12(1):17373.DOI:10.1038/s41598-022-20411-4.
[43]
Yang S,Lee H,Jang B,et al. Development and validation of a visually explainable deep learning model for classification of Cshaped canals of the mandibular second molars in periapical and panoramic dental radiographs[J]. J Endod,2022,48(7):914-921.DOI:10.1016/j.joen.2022.04.007.
[44]
Sherwood AA,Sherwood AI,Setzer FC,et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone - beam computed tomography[J]. J Endod,2021,47(12):1907-1916. DOI:10.1016/j.joen.2021.09.009.
[45]
Fan B,Cheung GS,Fan M,et al. C-shaped canal system in mandibular second molars:Part Ⅱ—Radiographic features[J].J Endod,2004,30(12):904-908. DOI:10.1097/01.don.0000 136206.73115.93.
[46]
Lee J,Seo H,Choi YJ,et al. An endodontic forecasting model based on the analysis of preoperative dental radiographs:A pilot study on an endodontic predictive deep neural network[J]. J Endod,2023,49(6):710-719.DOI:10.1016/j.joen.2023.03.015.
[47]
Xu TK,Zhu Y,Peng L,et al. Artificial intelligence assisted identification of therapy history from periapical films for dental root canal[J]. Displays,2022,71:102119. DOI:10.1016/j.displa.2021.102119.
[48]
Buyuk C,Arican Alpay B,Er F. Detection of the separated root canal instrument on panoramic radiograph:A comparison of LSTM and CNN deep learning methods[J]. Dentomaxillofac Radiol,2023,52(3):20220209.DOI:10.1259/dmfr.20220209.
[49]
Özbay Y,Kazangirler BY,Özcan C,et al. Detection of the separated endodontic instrument on periapical radiographs using a deep learning-based convolutional neural network algorithm[J]. Aust Endod J,2024,50(1):131-139. DOI:10.1111/aej.12822.
[50]
Calazans MAA,Pontual ADA,Pontual MLDA,et al. A system for automatic classification of endodontic treatment quality in CBCT[J]. Clin Oral Investig,2024,28(4):223. DOI:10.1007/s00784-024-05599-1.
[51]
Albitar L,Zhao T,Huang C,et al. Artificial intelligence(AI)for detection and localization of unobturated second mesial buccal(MB2)canals in cone-beam computed tomography(CBCT)[J].Diagnostics,2022,12(12):3214. DOI:10.3390/diagnostics 12123214.
[52]
Usmani UA,Happonen A,Watada J. Enhancing medical diagnosis through deep learning and machine learning approaches in image analysis[C]//Arai K,et al,eds. Intelligent Systems and Applications.Springer,Cham,2024:449-468.DOI:10.1007/978-3-031-47718-8_30.
[1] 李洋, 蔡金玉, 党晓智, 常婉英, 巨艳, 高毅, 宋宏萍. 基于深度学习的乳腺超声应变弹性图像生成模型的应用研究[J]. 中华医学超声杂志(电子版), 2024, 21(06): 563-570.
[2] 杨敬武, 周美君, 陈雨凡, 李素淑, 何燕妮, 崔楠, 刘红梅. 人工智能超声结合品管圈活动对低年资超声医师甲状腺结节风险评估能力的作用[J]. 中华医学超声杂志(电子版), 2024, 21(05): 522-526.
[3] 罗刚, 泮思林, 孙玲玉, 李志新, 陈涛涛, 乔思波, 庞善臣. 一种新型语义网络分析模型对室间隔完整型肺动脉闭锁和危重肺动脉瓣狭窄胎儿右心发育不良程度的评价作用[J]. 中华医学超声杂志(电子版), 2024, 21(04): 377-383.
[4] 明昊, 肖迎聪, 巨艳, 宋宏萍. 乳腺癌风险预测模型的研究现状[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 287-291.
[5] 张嘉炜, 王瑞, 张克诚, 易磊, 周增丁. 烧烫伤创面深度智能检测模型P-YOLO的建立及测试效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(05): 379-385.
[6] 黄俊龙, 李文双, 李晓阳, 刘柏隆, 陈逸龙, 丘惠平, 周祥福. 基于盆底彩超的人工智能模型在女性压力性尿失禁分度诊断中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 597-605.
[7] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[8] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[9] 莫淇舟, 苏劲, 黄健, 李健维, 李思宁, 柳建军. 智能控压输尿管软镜碎石吸引取石术在直径10~25 mm上尿路结石中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 497-502.
[10] 苏博兴, 肖博, 李建兴. 2024年美国泌尿外科学会年会结石领域手术治疗相关热点研究及解读[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 303-308.
[11] 莫林键, 杨舒博, 农卫赟, 程继文. 人工智能虚拟数字医师在钬激光前列腺剜除日间手术患教管理中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 318-322.
[12] 阮星星, 黄智渊, 刘芙香, 狄金明. 从临床医师诊治患者的思路出发撰写临床研究论文[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 397-401.
[13] 李义亮, 苏拉依曼·牙库甫, 麦麦提艾力·麦麦提明, 克力木·阿不都热依木. 机器人与腹腔镜食管裂孔疝修补术联合Nissen 胃底折叠术短期疗效分析[J]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 512-517.
[14] 赵毅, 李昶田, 唐文博, 白雪婷, 刘荣. 腹腔镜术中超声主胰管自动识别模型的临床应用[J]. 中华腔镜外科杂志(电子版), 2024, 17(05): 290-294.
[15] 张玮玮, 霍晓川. 人工智能时代医学生批判性思维培养的重要性[J]. 中华脑血管病杂志(电子版), 2024, 18(04): 357-359.
阅读次数
全文


摘要