[1] |
Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry[J]. J Pharm Bioallied Sci,2013,5(Suppl 1):S125-S127. DOI: 10.4103/0975-7406.113312.
|
[2] |
Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla:anatomic and surgical considerations[J]. Int J Oral Maxillofac Implants,2004,19 Suppl:43-61.
|
[3] |
Tolstunov L, Hamrick J, Broumand V,et al. Bone Augmentation Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology[J]. Oral Maxillofac Surg Clin North Am,2019,31(2):163-191. DOI: 10.1016/j.coms.2019.01.005.
|
[4] |
Troeltzsch M, Troeltzsch M, Kauffmann P,et al. Clinical efficacy of grafting materials in alveolar ridge augmentation:A systematic review[J]. J Craniomaxillofac Surg,2016,44(10):1618-1629. DOI: 10.1016/j.jcms.2016.07.028.
|
[5] |
Horowitz RA, Leventis MD, Rohrer MD,et al. Bone grafting:history,rationale,and selection of materials and techniques[J]. Compend Contin Educ Dent,2014,35(4 Suppl):1-6.
|
[6] |
Motamedian SR, Hosseinpour S, Ahsaie MG,et al. Smart scaffolds in bone tissue engineering:A systematic review of literature[J]. World J Stem Cells,2015,7(3):657-668. DOI: 10.4252/wjsc.v7.i3.657.
|
[7] |
Swetha M, Sahithi K, Moorthi A,et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering [J]. Int J Biol Macromol,2010,47(1):1-4. DOI: 10.1016/j.ijbiomac.2010.03.015.
|
[8] |
Aboushelib MN, Shawky R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles[J]. Int J Implant Dent,2017,3(1):21. DOI: 10.1186/s40729-017-0082-6.
|
[9] |
Cunniffe GM, Curtin CM, Thompson EM,et al. Content-Dependent Osteogenic Response of Nanohydroxyapatite:An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds[J]. ACS Appl Mater Interfaces,2016,8(36):23477-23488. DOI: 10.1021/acsami.6b06596.
|
[10] |
He S, Lin KF, Sun Z,et al. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid)Microsphere-Based Composite Scaffolds on Repair of Bone Defects:Evaluating the Role of Nano-hydroxyapatite Content[J]. Artif Organs,2016,40(7):E128-E135. DOI: 10.1111/aor.12741.
|
[11] |
Zan X, Sitasuwan P, Feng S,et al. Effect of Roughness on in Situ Biomineralized CaP-Collagen Coating on the Osteogenesis of Mesenchymal Stem Cells[J]. Langmuir,2016,32(7):1808-1817. DOI: 10.1021/acs.langmuir.5b04245.
|
[12] |
Deng Y, Liu X, Xu A,et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite[J]. Int J Nanomedicine,2015,10:1425-1447. DOI: 10.2147/ijn.S75557.
|
[13] |
Uchikawa E, Yoshizawa M, Li X,et al. Tooth transplantation with a beta-tricalcium phosphate scaffold accelerates bone formation and periodontal tissue regeneration[J]. Oral Dis,2020. DOI: 10.1111/odi.13634.
|
[14] |
Okada T, Kanai T, Tachikawa N,et al. Histological and Histomorphometrical Determination of the Biogradation of beta-Tricalcium Phosphate Granules in Maxillary Sinus Floor Augmentation:A Prospective Observational Study[J]. Implant Dent,2017,26(2):275-283. DOI: 10.1097/id.0000000000000577.
|
[15] |
Wach T, Kozakiewicz M. Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials-Texture Analysis after 12 Months of Observation[J]. Materials(Basel),2020,13(17):3854. DOI: 10.3390/ma13173854.
|
[16] |
Gonzalvez-Garcia M, Martinez CM, Villanueva V,et al. Preclinical Studies of the Biosafety and Efficacy of Human Bone Marrow Mesenchymal Stem Cells Pre-Seeded into beta-TCP Scaffolds after Transplantation[J]. Materials(Basel),2018,11(8):1349. DOI: 10.3390/ma11081349.
|
[17] |
Ma D, Wang Y, Chen Y,et al. Promoting Osseointegration of Dental Implants in Dog Maxillary Sinus Floor Augmentation Using Dentin Matrix Protein 1-Transduced Bone Marrow Stem Cells[J]. Tissue Eng Regen Med,2020,17(5):705-715. DOI: 10.1007/s13770-020-00277-1.
|
[18] |
Mordenfeld A, Lindgren C, Hallman M. Sinus Floor Augmentation Using Straumann ® BoneCeramic TM and Bio-Oss ® in a Split Mouth Design and Later Placement of Implants:A 5-Year Report from a Longitudinal Study[J]. Clin Implant Dent Relat Res,2016,18(5):926-936. DOI: 10.1111/cid.12374.
|
[19] |
Oh JS, Seo YS, Lee GJ,et al. A Comparative Study with Biphasic Calcium Phosphate to Deproteinized Bovine Bone in Maxillary Sinus Augmentation:A Prospective Randomized and Controlled Clinical Trial[J]. Int J Oral Maxillofac Implants,2019,34(1):233-242. DOI: 10.11607/jomi.7116.
|
[20] |
Pripatnanont P, Praserttham P, Suttapreyasri S,et al. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects[J]. Int J Oral Maxillofac Implants,2016,31(2):294-303. DOI: 10.11607/jomi.4531.
|
[21] |
van Esterik FA, Zandieh-Doulabi B, Kleverlaan CJ,et al. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels[J]. Stem Cells Int,2016,2016:1934270. DOI: 10.1155/2016/1934270.
|
[22] |
Wang P, Song Y, Weir MD,et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering[J]. Dent Mater,2016,32(2):252-263. DOI: 10.1016/j.dental.2015.11.019.
|
[23] |
Sverzut AT, Rodrigues DC, Lauria A,et al. Clinical,radiographic,and histological analyses of calcium phosphate cement as filling material in maxillary sinus lift surgery[J]. Clin Oral Implants Res,2015,26(6):633-638. DOI: 10.1111/clr.12346.
|
[24] |
Profeta AC, Huppa C. Bioactive-glass in Oral and Maxillofacial Surgery[J]. Craniomaxillofac Trauma Reconstr,2016,9(1):1-14. DOI: 10.1055/s-0035-1551543.
|
[25] |
Menezes JD, Pereira RDS, Bonardi JP,et al. Bioactive glass added to autogenous bone graft in maxillary sinus augmentation:a prospective histomorphometric,immunohistochemical,and bone graft resorption assessment[J]. J Appl Oral Sci,2018,26:e20170296. DOI: 10.1590/1678-7757-2017-0296.
|
[26] |
Raynaud N, Meyer C, Bretaudeau C,et al. Use of a biphasic bone substitute dispersed within a collagen matrix as a filling material in sinus floor elevations. A retrospective monocentric study[J]. J Stomatol Oral Maxillofac Surg,2019,120(5):402-405. DOI: 10.1016/j.jormas.2019.02.019.
|
[27] |
Mazzoni E, D′Agostino A, Iaquinta MR,et al. Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients[J]. Stem Cells Transl Med,2020,9(3):377-388. DOI: 10.1002/sctm.19-0170.
|
[28] |
Akino N, Tachikawa N, Miyahara T,et al. Vertical ridge augmentation using a porous composite of uncalcined hydroxyapatite and poly-DL-lactide enriched with types 1 and 3 collagen[J]. Int J Implant Dent,2019,5(1):16. DOI: 10.1186/s40729-019-0167-5.
|
[29] |
Comblain F, Rocasalbas G, Gauthier S,et al. Chitosan:A promising polymer for cartilage repair and viscosupplementation [J]. Biomed Mater Eng,2017,28(s1):S209-S215. DOI: 10.3233/BME-171643.
|
[30] |
Iqbal H, Ali M, Zeeshan R,et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose(HPMC)spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes [J]. Colloids Surf B Biointerfaces,2017,160:553-563. DOI: 10.1016/j.colsurfb.2017.09.059.
|
[31] |
Kozusko SD, Riccio C, Goulart M,et al. Chitosan as a Bone Scaffold Biomaterial[J]. J Craniofac Surg,2018,29(7):1788-1793. DOI: 10.1097/Scs.0000000000004909.
|
[32] |
Venkatesan J, Bhatnagar I, Manivasagan P,et al. Alginate composites for bone tissue engineering:A review[J]. Int J Biol Macromol,2015,72:269-281. DOI: 10.1016/j.ijbiomac.2014.07.008.
|
[33] |
Lee HJ, Kim B, Padalhin AR,et al. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material[J]. Mater Sci Eng C Mater Biol Appl,2019,94:385-392. DOI: 10.1016/j.msec.2018.09.039.
|
[34] |
Song R, Murphy M, Li CS,et al. Current development of biodegradable polymeric materials for biomedical applications [J]. Drug Des Dev Ther,2018,12:3117-3145. DOI: 10.2147/Dddt.S165440.
|
[35] |
Sukegawa S, Kawai H, Nakano K,et al. Feasible Advantage of Bioactive/Bioresorbable Devices Made of Forged Composites of Hydroxyapatite Particles and Poly-L-lactide in Alveolar Bone Augmentation:A Preliminary Study[J]. Int J Med Sci,2019,16(2):311-317. DOI: 10.7150/ijms.27986.
|
[36] |
Manavitehrani I, Fathi A, Badr H,et al. Biomedical Applications of Biodegradable Polyesters[J]. Polymers(Basel),2016,8(1):20. DOI: 10.3390/polym8010020.
|
[37] |
Li Y, Liao C, Tjong SC. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications [J]. Nanomaterials(Basel),2019,9(4):590. DOI: 10.3390/nano9040590.
|
[38] |
Sun X, Xu C, Wu G,et al. Poly(Lactic-co-Glycolic Acid):Applications and Future Prospects for Periodontal Tissue Regeneration[J]. Polymers(Basel),2017,9(6):189. DOI: 10.3390/polym9060189.
|
[39] |
Leventis M, AgrogianniS G, Fairbairn P,et al. Evaluation of an In Situ Hardening β-Tricalcium Phosphate Graft Material for Alveolar Ridge Preservation. A Histomorphometric Animal Study in Pigs[J]. Dent J(Basel),2018,6(3):27. DOI: 10.3390/dj6030027.
|
[40] |
Leventis MD, Fairbairn P, Kakar A,et al. Minimally Invasive Alveolar Ridge Preservation Utilizing an In Situ Hardening beta-Tricalcium Phosphate Bone Substitute:A Multicenter Case Series[J]. Int J Dent,2016,2016:5406736. DOI: 10.1155/2016/5406736.
|
[41] |
Kakar A, Rao BHS, Hegde S,et al. Ridge preservation using an in situ hardening biphasic calcium phosphate(beta-TCP/HA)bone graft substitute-a clinical,radiological,and histological study[J]. Int J Implant Dent,2017,3(1):25. DOI: 10.1186/s40729-017-0086-2.
|
[42] |
Flichy-Fernandez AJ, Blaya-Tarraga JA, O′Valle F,et al. Sinus floor elevation using particulate PLGA-coated biphasic calcium phosphate bone graft substitutes:A prospective histological and radiological study[J]. Clin Implant Dent Relat Res,2019,21(5):895-902. DOI: 10.1111/cid.12741.
|
[43] |
Li Y, Na R, Wang X,et al. Fabrication of Antimicrobial Peptide-Loaded PLGA/Chitosan Composite Microspheres for Long-Acting Bacterial Resistance[J]. Molecules,2017,22(10):1637. DOI: 10.3390/molecules22101637.
|
[44] |
Yeo A, Wong WJ, Khoo HH,et al. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation:an in vitro and in vivo characterization[J]. J Biomed Mater Res A,2010,92(1):311-321. DOI: 10.1002/jbm.a.32366.
|
[45] |
Yeo A, Cheok C, Teoh SH,et al. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model[J]. Clin Oral Implants Res,2012,23(12):1322-1332. DOI: 10.1111/j.1600-0501.2011.02366.x.
|
[46] |
Khojasteh A, Behnia H, Hosseini FS,et al. The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible:A preliminary report[J]. J Biomed Mater Res B Appl Biomater,2013,101B(5):848-854. DOI: 10.1002/jbm.b.32889.
|
[47] |
|
[48] |
Wan Z, Zhang P, Liu Y,et al. Four-dimensional bioprinting:Current developments and applications in bone tissue engineering [J]. Acta Biomater,2020,101:26-42. DOI: 10.1016/j.actbio.2019.10.038.
|