切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 65 -71. doi: 10.3877/cma.j.issn.1674-1366.2021.02.001

所属专题: 文献

中青年专家笔谈

块状异质植骨材料用于牙槽嵴骨增量的研究进展
黄帅1, 周小妮1, 刘彦乐1, 刘艳1, 马威1,()   
  1. 1. 军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔生物工程技术研究中心,第四军医大学口腔医院种植科,西安 710032
  • 收稿日期:2020-09-22 出版日期:2021-04-01
  • 通信作者: 马威

Research progress of alloplastic block grafts for alveolar ridge bone augmentation

Shuai Huang1, Xiaoni Zhou1, Yanle Liu1, Yan Liu1, Wei Ma1,()   

  1. 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implant Dentistry & School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China
  • Received:2020-09-22 Published:2021-04-01
  • Corresponding author: Wei Ma
  • Supported by:
    Key Research and Development Program of Shaanxi(2020SF-014)
引用本文:

黄帅, 周小妮, 刘彦乐, 刘艳, 马威. 块状异质植骨材料用于牙槽嵴骨增量的研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 65-71.

Shuai Huang, Xiaoni Zhou, Yanle Liu, Yan Liu, Wei Ma. Research progress of alloplastic block grafts for alveolar ridge bone augmentation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(02): 65-71.

各种原因所致的牙槽嵴骨量不足是口腔种植临床实践中亟需解决的问题之一。与自体骨相比,块状异质植骨材料因其独特的优势成为研究的热点。本文根据目前已经应用或有望应用于牙槽嵴骨增量领域的块状异质植骨材料的性能特点,分类讨论了无机陶瓷类材料、天然有机高分子材料及有机合成高分子材料的应用现状和最新研究进展,并对块状异质植骨材料的研究方向和前景进行了展望。

Alveolar ridge loss caused by various reasons has always been one of the urgent problems to be solved in clinical practice of implant dentistry. Compared with autogenous bone, alloplastic block grafts have become a research hotspot because of their unique advantages. In this article, according to the performance characteristics of alloplastic block grafts which have been or are expected to be used in the field of alveolar bone augmentation, the application status and latest research progress of inorganic ceramic materials, natural organic polymer materials and organic synthetic polymer materials are discussed. Finally, the research and development direction of alloplastic block grafts are prospected.

[1]
Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry[J]. J Pharm Bioallied Sci,2013,5(Suppl 1):S125-S127. DOI:10.4103/0975-7406.113312.
[2]
Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla:anatomic and surgical considerations[J]. Int J Oral Maxillofac Implants,2004,19 Suppl:43-61.
[3]
Tolstunov L, Hamrick J, Broumand V,et al. Bone Augmentation Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology[J]. Oral Maxillofac Surg Clin North Am,2019,31(2):163-191. DOI:10.1016/j.coms.2019.01.005.
[4]
Troeltzsch M, Troeltzsch M, Kauffmann P,et al. Clinical efficacy of grafting materials in alveolar ridge augmentation:A systematic review[J]. J Craniomaxillofac Surg,2016,44(10):1618-1629. DOI:10.1016/j.jcms.2016.07.028.
[5]
Horowitz RA, Leventis MD, Rohrer MD,et al. Bone grafting:history,rationale,and selection of materials and techniques[J]. Compend Contin Educ Dent,2014,35(4 Suppl):1-6.
[6]
Motamedian SR, Hosseinpour S, Ahsaie MG,et al. Smart scaffolds in bone tissue engineering:A systematic review of literature[J]. World J Stem Cells,2015,7(3):657-668. DOI:10.4252/wjsc.v7.i3.657.
[7]
Swetha M, Sahithi K, Moorthi A,et al. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering [J]. Int J Biol Macromol,2010,47(1):1-4. DOI:10.1016/j.ijbiomac.2010.03.015.
[8]
Aboushelib MN, Shawky R. Osteogenesis ability of CAD/CAM porous zirconia scaffolds enriched with nano-hydroxyapatite particles[J]. Int J Implant Dent,2017,3(1):21. DOI:10.1186/s40729-017-0082-6.
[9]
Cunniffe GM, Curtin CM, Thompson EM,et al. Content-Dependent Osteogenic Response of Nanohydroxyapatite:An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds[J]. ACS Appl Mater Interfaces,2016,8(36):23477-23488. DOI:10.1021/acsami.6b06596.
[10]
He S, Lin KF, Sun Z,et al. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid)Microsphere-Based Composite Scaffolds on Repair of Bone Defects:Evaluating the Role of Nano-hydroxyapatite Content[J]. Artif Organs,2016,40(7):E128-E135. DOI:10.1111/aor.12741.
[11]
Zan X, Sitasuwan P, Feng S,et al. Effect of Roughness on in Situ Biomineralized CaP-Collagen Coating on the Osteogenesis of Mesenchymal Stem Cells[J]. Langmuir,2016,32(7):1808-1817. DOI:10.1021/acs.langmuir.5b04245.
[12]
Deng Y, Liu X, Xu A,et al. Effect of surface roughness on osteogenesis in vitro and osseointegration in vivo of carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite composite[J]. Int J Nanomedicine,2015,10:1425-1447. DOI:10.2147/ijn.S75557.
[13]
Uchikawa E, Yoshizawa M, Li X,et al. Tooth transplantation with a beta-tricalcium phosphate scaffold accelerates bone formation and periodontal tissue regeneration[J]. Oral Dis,2020. DOI:10.1111/odi.13634.
[14]
Okada T, Kanai T, Tachikawa N,et al. Histological and Histomorphometrical Determination of the Biogradation of beta-Tricalcium Phosphate Granules in Maxillary Sinus Floor Augmentation:A Prospective Observational Study[J]. Implant Dent,2017,26(2):275-283. DOI:10.1097/id.0000000000000577.
[15]
Wach T, Kozakiewicz M. Fast-Versus Slow-Resorbable Calcium Phosphate Bone Substitute Materials-Texture Analysis after 12 Months of Observation[J]. Materials(Basel),2020,13(17):3854. DOI:10.3390/ma13173854.
[16]
Gonzalvez-Garcia M, Martinez CM, Villanueva V,et al. Preclinical Studies of the Biosafety and Efficacy of Human Bone Marrow Mesenchymal Stem Cells Pre-Seeded into beta-TCP Scaffolds after Transplantation[J]. Materials(Basel),2018,11(8):1349. DOI:10.3390/ma11081349.
[17]
Ma D, Wang Y, Chen Y,et al. Promoting Osseointegration of Dental Implants in Dog Maxillary Sinus Floor Augmentation Using Dentin Matrix Protein 1-Transduced Bone Marrow Stem Cells[J]. Tissue Eng Regen Med,2020,17(5):705-715. DOI:10.1007/s13770-020-00277-1.
[18]
Mordenfeld A, Lindgren C, Hallman M. Sinus Floor Augmentation Using Straumann® BoneCeramicTM and Bio-Oss® in a Split Mouth Design and Later Placement of Implants:A 5-Year Report from a Longitudinal Study[J]. Clin Implant Dent Relat Res,2016,18(5):926-936. DOI:10.1111/cid.12374.
[19]
Oh JS, Seo YS, Lee GJ,et al. A Comparative Study with Biphasic Calcium Phosphate to Deproteinized Bovine Bone in Maxillary Sinus Augmentation:A Prospective Randomized and Controlled Clinical Trial[J]. Int J Oral Maxillofac Implants,2019,34(1):233-242. DOI:10.11607/jomi.7116.
[20]
Pripatnanont P, Praserttham P, Suttapreyasri S,et al. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects[J]. Int J Oral Maxillofac Implants,2016,31(2):294-303. DOI:10.11607/jomi.4531.
[21]
van Esterik FA, Zandieh-Doulabi B, Kleverlaan CJ,et al. Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels[J]. Stem Cells Int,2016,2016:1934270. DOI:10.1155/2016/1934270.
[22]
Wang P, Song Y, Weir MD,et al. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering[J]. Dent Mater,2016,32(2):252-263. DOI:10.1016/j.dental.2015.11.019.
[23]
Sverzut AT, Rodrigues DC, Lauria A,et al. Clinical,radiographic,and histological analyses of calcium phosphate cement as filling material in maxillary sinus lift surgery[J]. Clin Oral Implants Res,2015,26(6):633-638. DOI:10.1111/clr.12346.
[24]
Profeta AC, Huppa C. Bioactive-glass in Oral and Maxillofacial Surgery[J]. Craniomaxillofac Trauma Reconstr,2016,9(1):1-14. DOI:10.1055/s-0035-1551543.
[25]
Menezes JD, Pereira RDS, Bonardi JP,et al. Bioactive glass added to autogenous bone graft in maxillary sinus augmentation:a prospective histomorphometric,immunohistochemical,and bone graft resorption assessment[J]. J Appl Oral Sci,2018,26:e20170296. DOI:10.1590/1678-7757-2017-0296.
[26]
Raynaud N, Meyer C, Bretaudeau C,et al. Use of a biphasic bone substitute dispersed within a collagen matrix as a filling material in sinus floor elevations. A retrospective monocentric study[J]. J Stomatol Oral Maxillofac Surg,2019,120(5):402-405. DOI:10.1016/j.jormas.2019.02.019.
[27]
Mazzoni E, D′Agostino A, Iaquinta MR,et al. Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients[J]. Stem Cells Transl Med,2020,9(3):377-388. DOI:10.1002/sctm.19-0170.
[28]
Akino N, Tachikawa N, Miyahara T,et al. Vertical ridge augmentation using a porous composite of uncalcined hydroxyapatite and poly-DL-lactide enriched with types 1 and 3 collagen[J]. Int J Implant Dent,2019,5(1):16. DOI:10.1186/s40729-019-0167-5.
[29]
Comblain F, Rocasalbas G, Gauthier S,et al. Chitosan:A promising polymer for cartilage repair and viscosupplementation [J]. Biomed Mater Eng,2017,28(s1):S209-S215. DOI:10.3233/BME-171643.
[30]
Iqbal H, Ali M, Zeeshan R,et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose(HPMC)spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes [J]. Colloids Surf B Biointerfaces,2017,160:553-563. DOI:10.1016/j.colsurfb.2017.09.059.
[31]
Kozusko SD, Riccio C, Goulart M,et al. Chitosan as a Bone Scaffold Biomaterial[J]. J Craniofac Surg,2018,29(7):1788-1793. DOI:10.1097/Scs.0000000000004909.
[32]
Venkatesan J, Bhatnagar I, Manivasagan P,et al. Alginate composites for bone tissue engineering:A review[J]. Int J Biol Macromol,2015,72:269-281. DOI:10.1016/j.ijbiomac.2014.07.008.
[33]
Lee HJ, Kim B, Padalhin AR,et al. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material[J]. Mater Sci Eng C Mater Biol Appl,2019,94:385-392. DOI:10.1016/j.msec.2018.09.039.
[34]
Song R, Murphy M, Li CS,et al. Current development of biodegradable polymeric materials for biomedical applications [J]. Drug Des Dev Ther,2018,12:3117-3145. DOI:10.2147/Dddt.S165440.
[35]
Sukegawa S, Kawai H, Nakano K,et al. Feasible Advantage of Bioactive/Bioresorbable Devices Made of Forged Composites of Hydroxyapatite Particles and Poly-L-lactide in Alveolar Bone Augmentation:A Preliminary Study[J]. Int J Med Sci,2019,16(2):311-317. DOI:10.7150/ijms.27986.
[36]
Manavitehrani I, Fathi A, Badr H,et al. Biomedical Applications of Biodegradable Polyesters[J]. Polymers(Basel),2016,8(1):20. DOI:10.3390/polym8010020.
[37]
Li Y, Liao C, Tjong SC. Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications [J]. Nanomaterials(Basel),2019,9(4):590. DOI:10.3390/nano9040590.
[38]
Sun X, Xu C, Wu G,et al. Poly(Lactic-co-Glycolic Acid):Applications and Future Prospects for Periodontal Tissue Regeneration[J]. Polymers(Basel),2017,9(6):189. DOI:10.3390/polym9060189.
[39]
Leventis M, AgrogianniS G, Fairbairn P,et al. Evaluation of an In Situ Hardening β-Tricalcium Phosphate Graft Material for Alveolar Ridge Preservation. A Histomorphometric Animal Study in Pigs[J]. Dent J(Basel),2018,6(3):27. DOI:10.3390/dj6030027.
[40]
Leventis MD, Fairbairn P, Kakar A,et al. Minimally Invasive Alveolar Ridge Preservation Utilizing an In Situ Hardening beta-Tricalcium Phosphate Bone Substitute:A Multicenter Case Series[J]. Int J Dent,2016,2016:5406736. DOI:10.1155/2016/5406736.
[41]
Kakar A, Rao BHS, Hegde S,et al. Ridge preservation using an in situ hardening biphasic calcium phosphate(beta-TCP/HA)bone graft substitute-a clinical,radiological,and histological study[J]. Int J Implant Dent,2017,3(1):25. DOI:10.1186/s40729-017-0086-2.
[42]
Flichy-Fernandez AJ, Blaya-Tarraga JA, O′Valle F,et al. Sinus floor elevation using particulate PLGA-coated biphasic calcium phosphate bone graft substitutes:A prospective histological and radiological study[J]. Clin Implant Dent Relat Res,2019,21(5):895-902. DOI:10.1111/cid.12741.
[43]
Li Y, Na R, Wang X,et al. Fabrication of Antimicrobial Peptide-Loaded PLGA/Chitosan Composite Microspheres for Long-Acting Bacterial Resistance[J]. Molecules,2017,22(10):1637. DOI:10.3390/molecules22101637.
[44]
Yeo A, Wong WJ, Khoo HH,et al. Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation:an in vitro and in vivo characterization[J]. J Biomed Mater Res A,2010,92(1):311-321. DOI:10.1002/jbm.a.32366.
[45]
Yeo A, Cheok C, Teoh SH,et al. Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micropig model[J]. Clin Oral Implants Res,2012,23(12):1322-1332. DOI:10.1111/j.1600-0501.2011.02366.x.
[46]
Khojasteh A, Behnia H, Hosseini FS,et al. The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible:A preliminary report[J]. J Biomed Mater Res B Appl Biomater,2013,101B(5):848-854. DOI:10.1002/jbm.b.32889.
[47]
Gopinathan J, Noh I. Recent trends in bioinks for 3D printing [J]. Biomater Res,2018,22:11. DOI:10.1186/s40824-018-0122-1.
[48]
Wan Z, Zhang P, Liu Y,et al. Four-dimensional bioprinting:Current developments and applications in bone tissue engineering [J]. Acta Biomater,2020,101:26-42. DOI:10.1016/j.actbio.2019.10.038.
[1] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[2] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[3] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[4] 马瑞, 杨佩, 田润, 王春生, 王坤正. 机器人辅助髓芯减压术治疗股骨头坏死的效果[J]. 中华关节外科杂志(电子版), 2023, 17(01): 123-128.
[5] 刘凯, 李萌, 姬文晨, 杨卫周, 刘俭涛. 全髋关节置换联合自体松质骨移植治疗老年股骨颈骨折[J]. 中华关节外科杂志(电子版), 2022, 16(06): 786-789.
[6] 徐永清, 浦路桥, 李川, 单长蒙, 浦绍全, 王腾, 林玮, 蔡兴博, 李霞. 保留后上支持动脉的股方肌骨瓣治疗股骨头坏死的临床研究[J]. 中华关节外科杂志(电子版), 2022, 16(06): 664-669.
[7] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[8] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[9] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[10] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[11] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[12] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[13] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 中华医学会骨科学分会, 邢军超, 毕龙, 陈林, 董世武, 高梁斌, 侯天勇, 侯志勇, 黄伟, 靳慧勇, 李岩, 李忠海, 刘鹏, 刘曦明, 罗飞, 马锋, 沈杰, 宋锦璘, 唐佩福, 吴新宝, 徐宝山, 许建中, 徐永清, 颜滨, 杨鹏, 叶青, 殷国勇, 于腾波, 曾建成, 张长青, 张英泽, 张泽华, 赵枫, 周跃, 朱芸, 邹俊. 自体骨髓富集骨修复技术临床应用专家共识(2023版)[J]. 中华卫生应急电子杂志, 2023, 09(03): 129-141.
阅读次数
全文


摘要