切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2014, Vol. 8 ›› Issue (04) : 337 -340. doi: 10.3877/cma.j.issn.1674-1366.2014.04.016

综述

靶向Wnt 信号通路在牙周炎治疗领域的研究现状
汪明璐1, 吴坚1,()   
  1. 1.510630 广州,中山大学附属第三医院口腔科
  • 收稿日期:2013-12-11 出版日期:2014-08-01
  • 通信作者: 吴坚

Current status of targeting Wnt signaling pathways in periodontal therapy

Minglu Wang1, Jian Wu1,()   

  1. 1.The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
  • Received:2013-12-11 Published:2014-08-01
  • Corresponding author: Jian Wu
引用本文:

汪明璐, 吴坚. 靶向Wnt 信号通路在牙周炎治疗领域的研究现状[J/OL]. 中华口腔医学研究杂志(电子版), 2014, 8(04): 337-340.

Minglu Wang, Jian Wu. Current status of targeting Wnt signaling pathways in periodontal therapy[J/OL]. Chinese Journal of Stomatological Research(Electronic Edition), 2014, 8(04): 337-340.

牙周炎是由菌斑细菌引起并最终导致牙周支持组织吸收的感染性疾病,其药物治疗主要分为抑制炎症反应和介导牙周组织修复两个方面。 Wnt 信号通路是调控胚胎干细胞以及多种组织干细胞自我更新和分化的关键途径, 被认为是生物体中最为重要的信号通路之一。 一些研究显示,Wnt 信号通路在牙周炎的发生和治疗中起到关键作用。 本综述从牙周病炎症免疫反应和介导牙周膜细胞成骨分化两个方面介绍了近年来关于Wnt 信号通路调控的研究成果,并比较了可能通过激活Wnt 通路介导牙周膜细胞成骨分化的潜在药物,为靶向Wnt 通路治疗牙周炎提供了依据。

The periodontitis disease caused by the infection of plaque bacteria is an infective disease which eventually lead to resorption of periodontal tissues. Nowadays, there are two kinds of chemical therapies for periodontitis:anti-inflammation and reconstruction of periodontal tissues. Wnt pathway is considered as one of the central pathways to regulate self-renewal and differentiation of embryonic and somatic stem cell. Recent studies have shown that Wnt pathway played a pivotal role in the pathogenesis and treatment of periodontitis. This review introduces the novel studies of the Wnt pathway in the regulation of immuno-inflammatory responses of periodontitis and the osteogenesis of periodontal ligament cells (PDLCs). Moreover, the review compares potential medications that promoting osteogenesis of PDLCs through Wnt pathway, providing evidence of treatments targeting Wnt pathway in periodontitis.

[1]
Soares GM, Figueiredo LC, Faveri M, et al. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs [J]. J Appl Oral Sci, 2012,20(3):295-309.
[2]
Chen FM, Sun HH, Lu H, et al. Stem cell-delivery therapeutics for periodontal tissue regeneration [J]. Biomaterials, 2012,33(27):6320-6344.
[3]
Liu Y, Zheng Y, Ding G, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine [J].Stem Cells, 2008,26(4):1065-1073.
[4]
Bejsovec A. Wnt pathway activation:new relations and locations[J]. Cell, 2005,120(1):11-14.
[5]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease [J].Cell, 2012,149(6):1192-1205.
[6]
Nanbara H, Wara-aswapati N, Nagasawa T, et al. Modulation of Wnt5a expression by periodontopathic bacteria [J]. PLoS One,2012,7(4):e34434.
[7]
Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system:WNT is spreading its wings [J]. Nat Rev Immunol, 2008,8(8):581-593.
[8]
Pereira C, Schaer DJ, Bachli EB, et al. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10 [J]. Arterioscler Thromb Vasc Biol, 2008,28(3):504-510.
[9]
Hofbauer LC, Lacey DL, Dunstan CR, et al. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells [J]. Bone, 1999,25(3):255-259.
[10]
Nakashima T, Kobayashi Y, Yamasaki S, et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand:modulation of the expression by osteotropic factors and cytokines [J].Biochem Biophys Res Commun, 2000,275(3):768-775.
[11]
Blumenthal A, Ehlers S, Lauber J, et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation [J]. Blood, 2006,108(3):965-973.
[12]
Cheng CW, Yeh JC, Fan TP, et al. Wnt5a-mediated noncanonical Wnt signalling regulates human endothelial cell proliferation and migration [J]. Biochem Biophys Res Commun,2008,365(2):285-290.
[13]
Masckauchán TN, Agalliu D, Vorontchikhina M, et al. Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2 [J]. Mol Biol Cell,2006,17(12):5163-5172.
[14]
Liu N, Shi S, Deng M, et al. High levels of beta-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway [J]. J Bone Miner Res, 2011,26(9):2082-2095.
[15]
Heo JS, Lee SY, Lee JC. Wnt/β-catenin signaling enhances osteoblastogenic differentiation from human periodontal ligament fibroblasts [J]. Mol Cells, 2010,30(5):449-454.
[16]
Han P, Wu C, Chang J, et al. The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/βcatenin signalling pathway by Li+ ions released from bioactive scaffolds [J]. Biomaterials, 2012,33(27):6370-6379.
[17]
Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament [J]. Lancet, 2004,364(9429):149-155.
[18]
Ma Z, Li S, Song Y, et al. The biological effect of dentin noncollagenous proteins (DNCPs) on the human periodontal ligament stem cells (HPDLSCs) in vitro and in vivo [J]. Tissue Eng Part A, 2008,14(12):2059-2068.
[19]
Yang Z, Jin F, Zhang X, et al. Tissue engineering of cementum/periodontal-ligament complex using a novel threedimensional pellet cultivation system for human periodontal ligament stem cells [J]. Tissue Eng Part C Methods, 2009,15(4):571-581.
[20]
Trubiani O, Zalzal SF, Paganelli R, et al. Expression profile of the embryonic markers nanog, OCT-4, SSEA-1, SSEA-4, and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells [J]. J Cell Physiol, 2010,225(1):123-131.
[21]
Bennett CN, Ouyang H, Ma YL, et al. Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation[J]. J Bone Miner Res, 2007,22(12):1924-1932.
[22]
Boland GM, Perkins G, Hall DJ, et al. Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells [J]. J Cell Biochem, 2004,93(6):1210-1230.
[23]
Cho HH, Kim YJ, Kim SJ, et al. Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells [J]. Tissue Eng, 2006,12(1):111-121.
[24]
de Boer J, Siddappa R, Gaspar C, et al. Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells [J].Bone, 2004,34(5):818-826.
[25]
Liu G, Vijayakumar S, Grumolato L, et al. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells [J]. J Cell Biol, 2009,185(1):67-75.
[26]
Liu N, Shi S, Deng M, et al. High levels of beta-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway [J]. J Bone Miner Res, 2011,26(9):2082-2095.
[27]
Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells [J]. Gene, 2009,433(1-2):1-7.
[28]
Liu W, Liu Y, Guo T, et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments [J]. Cell Death Dis, 2013(4):e539.
[29]
D' Alimonte I, Nargi E, Lannutti A, et al. Adenosine A receptor stimulation enhances osteogenic differentiation of human dental pulp-derived mesenchymal stem cells via WNT signaling [J]. Stem Cell Res, 2013,11(1):611-624.
[30]
Guo AJ, Choi RC, Cheung AW, et al. Baicalin, a flavone,induces the differentiation of cultured osteoblasts:an action via the Wnt/beta-catenin signaling pathway [J]. J Biol Chem,2011,286(32):27882-27893.
[31]
郭英,李佩芳,舒晓春,等. 骨碎补总黄酮对骨髓间充质干细胞成骨分化过程中Wnt/β-catenin 信号通路的影响[J]. 中华医学杂志, 2012,92(32):2288-2291.
[32]
Luo W, Wang CY, Jin L. Baicalin downregulates Porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling [J]. PLoS One, 2012,7(12):e51008.
[1] 陈嘉婷, 杜美君, 石冰, 黄汉尧. 母体系统性疾病对新生儿唇腭裂发生的影响[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 262-268.
[2] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[3] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[4] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[5] 徐燕群, 李平, 杨兴, 薛慧. 脂多糖通过促进透明质酸受体CD44向核转移介导牙周膜细胞白细胞介素6释放[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 335-344.
[6] 张潇尹, 于洋. 牙龈卟啉单胞菌介导慢性肾病发生发展的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 328-334.
[7] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[8] 陈跃圻, 罗睿, 向涵, 余泳妍, 余挺. 骨质疏松症与牙周炎的因果关系:一项两样本孟德尔随机化研究[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 292-298.
[9] 陈欣, 张校晨, 秦文, 金作林. 过表达甲基转移酶样3修复炎症来源牙周膜干细胞的成骨能力[J/OL]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 15-25.
[10] 石蕊, 孙陈, 杨倩雯, 吴亚菲, 申道南. 抖音平台牙周炎相关短视频的质量分析:一项横断面研究[J/OL]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 364-369.
[11] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[12] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[13] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J/OL]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[14] 李翔, 刘堂盛. 奥硝唑联合牙周基础治疗老年2型糖尿病患者慢性牙周炎疗效分析[J/OL]. 中华老年病研究电子杂志, 2023, 10(03): 39-42.
[15] 周艳, 赵梦扬, 乔彤, 蔡颖. 人工智能辅助口腔环境管理模式在颈动脉狭窄合并牙周炎患者中的应用研究[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 528-534.
阅读次数
全文


摘要