切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 15 -25. doi: 10.3877/cma.j.issn.1674-1366.2023.01.003

论著

过表达甲基转移酶样3修复炎症来源牙周膜干细胞的成骨能力
陈欣1, 张校晨1, 秦文1, 金作林1,()   
  1. 1. 军事口腔医学国家重点实验室,国家口腔疾病临床医学研究中心,陕西省口腔疾病临床医学研究中心,空军军医大学第三附属医院口腔正畸科,西安 710032
  • 收稿日期:2022-10-18 出版日期:2023-02-01
  • 通信作者: 金作林

Overexpression of methyltransferase-like 3 repairs the osteogenic ability of periodontal mesenchymal stem cells in patients with periodontitis

Xin Chen1, Xiaochen Zhang1, Wen Qin1, Zuolin Jin1,()   

  1. 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi′an 710032, China
  • Received:2022-10-18 Published:2023-02-01
  • Corresponding author: Zuolin Jin
  • Supported by:
    National Natural Science Foundation of China(81970960, 82001079); 2020 Special Project of National Clinical Research Center for Oral Diseases(LCA202009)
引用本文:

陈欣, 张校晨, 秦文, 金作林. 过表达甲基转移酶样3修复炎症来源牙周膜干细胞的成骨能力[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 15-25.

Xin Chen, Xiaochen Zhang, Wen Qin, Zuolin Jin. Overexpression of methyltransferase-like 3 repairs the osteogenic ability of periodontal mesenchymal stem cells in patients with periodontitis[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(01): 15-25.

目的

探讨N6-甲基腺嘌呤(m6A)修饰与甲基转移酶样3(METTL3)在牙周膜干细胞(PDLSC)成骨分化和成脂分化中的作用。

方法

使用流式细胞术、细胞集落形成实验分别鉴定PDLSC的表面标志物和增殖能力。通过茜素红染色和油红O染色分别检测PDLSC的成骨和成脂分化潜能。在人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)中分别构建METTL3过表达和敲低模型,成骨诱导一定时间,通过实时定量反转录聚合酶链反应(RT-PCR)、蛋白免疫印迹(Western blot)、茜素红染色和油红O染色分别在mRNA水平、蛋白水平和宏观水平检测成骨和成脂的变化。两样本比较使用独立样本t检验,多组样本比较使用单因素方差分析。

结果

(1)流式细胞术结果显示,hPDLSC和pPDLSC均阳性表达CD29(100.0%,98.0%)、CD105(100.0%,99.5%)和CD146(31.5%,17.8%),阴性表达CD34(1.3%,0.4%)和CD45(1.4%,0.4%)。(2)细胞集落形成实验结果显示,hPDLSC和pPDLSC的集落形成数量分别为55±5和72±8,hPDLSC的细胞增殖能力较pPDLSC低(t = 3.16,P = 0.034)。(3)茜素红染色和油红O染色说明,两种细胞均具有成骨和成脂分化能力,hPDLSC具有更强的成骨分化能力(t = 27.77,P<0.001),而pPDLSC具有更强的成脂分化能力(t = 5.02,P = 0.007)。(4)成骨诱导培养7 d后的慢病毒转染模型中,METTL3过表达组比过表达对照组的成骨关键基因Runx2的mRNA表达水平高,在hPDLSC和pPDLSC中的METTL3过表达组的表达量是3.63 ± 1.15和1.61 ± 0.38,分别是其过表达对照组的3.39倍(t = 3.777,P = 0.020)和1.71倍(t = 2.948,P = 0.042);而在METTL3敲低组较敲低对照组低,在hPDLSC和pPDLSC中的METTL3敲低组的表达量是0.16 ± 0.03和0.26 ± 0.07,分别是其敲低对照组的0.15倍(t = 9.669,P<0.001)和0.26倍(t = 8.767,P<0.001)。同样地,Runx2的蛋白表达水平也发生相同改变。将转染后的细胞进行21 d的成骨诱导培养后进行茜素红染色,结果显示METTL3过表达组较过表达对照组染色深且钙化结节较大,定量分析结果显示在hPDLSC和pPDLSC中的METTL3过表达组是28.47% ± 3.82%和8.55% ± 0.43%,分别是其过表达对照组的1.78倍(t = 5.012,P = 0.007)和1.76倍(t = 7.293,P = 0.002),而在METTL3敲低组较敲低对照组染色浅且钙化结节较小,定量分析结果显示在hPDLSC和pPDLSC中的METTL3敲低组是6.36% ± 2.00%和3.78% ± 0.56%,分别是其敲低对照组的0.35倍(t = 4.444,P = 0.011)和0.43倍(t = 5.337,P = 0.006);将转染后的细胞进行21 d的成脂诱导培养,再进行油红O染色,结果显示脂滴的大小及数量在METTL3过表达组较过表达对照组少,定量分析结果显示在hPDLSC和pPDLSC中的METTL3过表达组是0.89% ± 0.11%和1.10% ± 1.15%,分别是其过表达对照组的0.24倍(t = 5.454,P = 0.006)和0.49倍(t = 2.935,P = 0.043),而在METTL3敲低组则比敲低对照组的脂滴更大且多,定量分析结果显示在hPDLSC和pPDLSC中的METTL3敲低组是3.60% ± 1.08%和5.34% ± 1.31%,分别是其敲低对照组的1.94倍(t = 2.794,P = 0.049)和2.93倍(t = 4.131,P = 0.015)。

结论

pPDLSC的METTL3表达水平低于hPDLSC;METTL3的过表达可促进hPDLSC和pPDLSC的成骨分化,并抑制两者的成脂分化。

Objective

To investigate the role of methyltransferase-like 3 (METTL3) in osteogenic and adipogenic differentiation of periodontal mesenchymal stem cells (PDLSCs) .

Methods

Flow cytometry and colony formation assay were used to identify the surface markers and proliferation ability of PDLSCs. The osteogenic and adipogenic differentiation potential of PDLSCs was detected by alizarin red staining and oil red O staining, respectively. Human periodontal mesenchymal stem cells (hPDLSCs) and periodontal mesenchymal stem cells in patients with periodontitis (pPDLSCs) were used to construct METTL3 overexpression and knockdown models, respectively. The changes of osteogenesis and adipogenesis were detected by RT-PCR, Western blot, alizarin red staining and oil red O staining at mRNA level, protein level and macroscopic level, respectively. Two samples were compared using independent sample t test, and multiple groups were compared using One-Way ANOVA.

Results

Flow cytometry showed that hPDLSCs and pPDLSCs were positive for CD29 (100.0%, 98.0%), CD105 (100.0%, 99.5%) and CD146 (31.5%, 17.8%), and negative for CD34 (1.3%, 0.4%) and CD45 (1.4%, 0.4%). The results of colony formation experiment showed that the number of colonies formed of hPDLSCs and pPDLSCs was 55 ± 5 and 72 ± 8, respectively, and the cell proliferation ability of hPDLSCs was lower than that of pPDLSCs (t = 3.16, P = 0.034). Alizarin red staining and oil red O staining showed that both cells had osteogenic and adipogenic differentiation ability. hPDLSCs had stronger osteogenic differentiation ability (t = 27.77, P<0.001), while pPDLSCs had stronger adipogenic differentiation ability (t = 5.02, P = 0.007). In the lentivirus transfection model, after 7 days of osteogenic induction culture, the mRNA expression level of Runx2 in the METTL3 overexpression group was higher than that in the overexpression control group. The expression level of Runx2 in the METTL3 overexpression group was 3.63 ± 1.15 and 1.61 ± 0.38 for hPDLSCs and pPDLSCs, respectively, which was 3.39 times (t = 3.777, P = 0.020) and 1.71 times (t = 2.948, P = 0.042) of the control group. The expression level of Runx2 in the METTL3 knockdown group was 0.16 ± 0.03 and 0.26 ± 0.07 for hPDLSCs and pPDLSCs, respectively, which was 0.15 times (t = 9.669, P<0.001) and 0.26 times (t = 8.767, P<0.001) of the control group. Runx2 protein expression level changed in the same way. After 21 days of osteogenic induction culture, the transfected cells were stained with alizarin red. The results showed that the METTL3 overexpression group had deeper staining and larger calcified nodules than the overexpression control group. The quantitative analysis results showed that the values of METTL3 overexpression group in hPDLSCs and pPDLSCs were 28.47% ± 3.82% and 8.55% ± 0.43%, which were 1.78 times (t = 5.012, P = 0.007) and 1.76 times (t = 7.293, P = 0.002) of the METTL3 overexpression control group. The staining was lighter and the calcified nodules were smaller in the knockdown group. The results of quantitative analysis showed that Runx2 protein expression level in the METTL3 knockdown group was 6.36% ± 2.00% and 3.78% ± 0.56% for hPDLSCs and pPDLSCs, respectively, which was 0.35 times (t = 4.444, P = 0.011) and 0.43 times (t = 5.337, P = 0.006) of the knockdown control group. The transfected cells were cultured for lipid induction for 21 days, and then stained with oil red O. The results showed that the size and number of lipid droplets in the METTL3 overexpression group were less than that in the overexpression control group. The quantitative analysis results showed that the values of lipid droplets in the METTL3 overexpression group in hPDLSCs and pPDLSCs were 0.89% ± 0.11% and 1.10% ± 1.15%, which were 0.24 times (t = 5.454, P = 0.006) and 0.49 times (t = 2.935, P = 0.043) of the control. The lipid droplets in the METTL3 knockdown group were larger and more than those in the knockdown control group. The quantitative analysis results showed that the values of lipid droplets in the METTL3 knockdown group in hPDLSCs and pPDLSCs were 3.60% ± 1.08% and 5.34% ± 1.31%, which were 1.94 times (t = 2.794, P = 0.049) and 2.93 times (t = 4.131, P = 0.015) of the control group, respectively.

Conclusions

The METTL3 expression level in pPDLSCs was lower than that in hPDLSCs. Overexpression of METTL3 can promote the osteogenic differentiation of hPDLSCs and pPDLSCs, and inhibit the adipogenic differentiation.

表1 实时定量RT-PCR引物序列
图1 流式细胞术鉴定人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)表面标志物
图2 细胞集落形成实验鉴定人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)细胞增殖能力 A:hPDLSC;B:pPDLSC;C:定量分析统计图,组间比较,差异有统计学意义(aP<0.05)。
图3 茜素红染色鉴定人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)成骨分化能力 A:hPDLSC;B:pPDLSC;C:定量分析统计图,组间比较,差异有统计学意义(aP<0.001)。
图4 油红O染色鉴定人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)成脂分化能力 A:hPDLSC;B:pPDLSC;C:定量分析统计图,组间比较,差异有统计学意义(aP<0.05)。
图5 甲基转移酶样3(METTL3)在人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)中含量的检测 A:mRNA表达水平,组间比较,差异有统计学意义(aP<0.05);B:蛋白表达水平。
图6 甲基转移酶样3(METTL3)促进人牙周膜干细胞(hPDLSC)和炎症来源牙周膜干细胞(pPDLSC)成骨分化 A:实时定量RT-PCR检测慢病毒转染效率;B:METTL3慢病毒转染后Runx2 mRNA表达水平的变化;组间比较,差异有统计学意义(aP<0.001,bP<0.05)。
图7 Westen blot检测甲基转移酶样3(METTL3)慢病毒转染后Runx2蛋白表达水平的变化 A:人牙周膜干细胞(hPDLSC);B:炎症来源牙周膜干细胞(pPDLSC)。
图8 甲基转移酶样3(METTL3)慢病毒转染后碱性磷酸酶(ALP)染色的变化及染色定量分析 A:METTL3过表达慢病毒转染后ALP染色;B:METTL3敲低慢病毒转染后ALP染色;C:METTL3过表达慢病毒转染后定量分析统计图;D:METTL3敲低慢病毒转染后定量分析统计图;组间比较,差异有统计学意义(aP<0.05)。hPDLSC:人牙周膜干细胞;pPDLSC:炎症来源牙周膜干细胞。
图9 甲基转移酶样3(METTL3)慢病毒转染后茜素红染色的变化及染色定量分析 A:METTL3过表达慢病毒转染后茜素红染色;B:METTL3敲低慢病毒转染后茜素红染色;C:METTL3过表达慢病毒转染后定量分析统计图;D:METTL3敲低慢病毒转染后定量分析统计图;组间比较,差异有统计学意义(aP<0.05)。hPDLSC:人牙周膜干细胞;pPDLSC:炎症来源牙周膜干细胞。
图10 甲基转移酶样3(METTL3)慢病毒转染后脂滴形成变化及染色定量分析 A:METTL3过表达慢病毒转染后油红O染色;B:METTL3敲低慢病毒转染后油红O染色;C:METTL3过表达慢病毒转染后定量分析统计图;D:METTL3敲低慢病毒转染后定量分析统计图;组间比较,差异有统计学意义(aP<0.05)。hPDLSC:人牙周膜干细胞;pPDLSC:炎症来源牙周膜干细胞。
[1]
Nuñez J, Vignoletti F, Caffesse RG,et al. Cellular therapy in periodontal regeneration[J]. Periodontology 20002019,79(1):107-116. DOI:10.1111/prd.12250.
[2]
Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells:Regenerative potency in periodontium[J]. Stem Cells Dev201928(15):974-985. DOI:10.1089/scd.2019.0031.
[3]
Zheng W, Wang S, Wang J,et al. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells[J]. Int J Mol Med201536(4):915-922. DOI:10.3892/ijmm.2015.2314.
[4]
Cheng M, Zhou Q. Targeting EZH2 ameliorates the LPS-Inhibited PDLSC osteogenesis via Wnt/β-catenin pathway[J]. Cells Tissues Organs2020209(4-6):227-235. DOI:10.1159/000511702.
[5]
Wang P, Tian H, Zhang Z,et al. EZH2 regulates lipopolysaccha-ride-induced periodontal ligament stem cell proliferation and osteogenesis through TLR4/MyD88/NF-κB pathway[J]. Stem Cells Int2021:7625134. DOI:10.1155/2021/7625134.
[6]
Li X, Zheng Y, Zheng Y,et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther20189(1):232. DOI:10.1186/s13287-018-0976-0.
[7]
Zhang L, Xia J. N6-methyladenosine methylation of mrna in cell senescence[J]. Cell Mol Neurobiol2021. DOI:10.1007/s10571-021-01168-2.
[8]
Li M, Zha X, Wang S. The role of N6-methyladenosine mRNA in the tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer20211875(2):188522. DOI:10.1016/j.bbcan.2021.188522.
[9]
Li YJ, Xu QW, Xu CH,et al. MSC promotes the secretion of exosomal miR-34a-5p and improve intestinal barrier function through METTL3-mediated pre-miR-34A m6A modification[J]. Mol Neurobiol202259(8):5222-5235. DOI:10.1007/s12035-022-02833-3.
[10]
Pan ZP, Wang B, Hou DY,et al. METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia[J]. FEBS Open Bio202111(6):1659-1672. DOI:10.1002/2211-5463.13165.
[11]
Ma Z, Ji J. N6-methyladenosine(m6A)RNA modification in cancer stem cells[J]. Stem Cells2020. DOI:10.1002/stem.3279.
[12]
Diomede F, Thangavelu SR, Merciaro I,et al. Porphyromonas gingivalis lipopolysaccharide stimulation in human periodontal ligament stem cells:Role of epigenetic modifications to the inflammation[J]. Eur J Histochem201761(3):2826. DOI:10.4081/ejh.2017.2826.
[13]
Uehara O, Abiko Y, Saitoh M,et al. Lipopolysaccharide extracted from Porphyromonas gingivalis induces DNA hypermethylation of runt-related transcription factor 2 in human periodontal fibroblasts[J]. J Microbiol Immunol Infect201447(3):176-181. DOI:10.1016/j.jmii.2012.08.005.
[14]
Wu RX, Bi CS, Yu Y,et al. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets[J]. Acta Biomater201522:70-82. DOI:10.1016/j.actbio.2015.04.024.
[15]
McKinnon KM. Flow cytometry:An overview[J]. Curr Protoc Immunol2018120:5.1.1-5.1.11. DOI:10.1002/cpim.40.
[16]
Gao LN, An Y, Lei M,et al. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets[J]. Biomaterials201334(38):9937-9951. DOI:10.1016/j.biomaterials.2013.09.017.
[17]
Wang L, Wu F, Song Y,et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients[J]. Cell Death Dis20167(8):e2327. DOI:10.1038/cddis.2016.125.
[18]
Xu Y, Qin W, Guo D,et al. LncRNA-TWIST1 promoted osteogenic differentiation both in PPDLSCs and in HPDLSCs by inhibiting TWIST1 expression[J]. Biomed Res Int2019:8735952. DOI:10.1155/2019/8735952.
[19]
Frye M, Harada BT, Behm M,et al. RNA modifications modulate gene expression during development[J]. Science2018361(6409):1346-1349. DOI:10.1126/science.aau1646.
[20]
Wang S, Lv W, Li T,et al. Dynamic regulation and functions of mRNA m6A modification[J]. Cancer Cell Int202222(1):48. DOI:10.1186/s12935-022-02452-x.
[21]
Wang Q, Chen C, Ding Q,et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance[J]. Gut202069(7):1193-1205. DOI:10.1136/gutjnl-2019-319639.
[22]
Song H, Feng X, Zhang H,et al. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA,which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes [J]. Autophagy201915(8):1419-1437. DOI:10.1080/15548627.2019.1586246.
[23]
Chang YZ, Chai RC, Pang B,et al. METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-κB to promote the malignant progression of IDH-wildtype glioma[J]. Cancer Lett2021511:36-46. DOI:10.1016/j.canlet.2021.04.020.
[24]
Song Y, Pan Y, Wu M,et al. METTL3-mediated lncRNA m6A modification in the osteogenic differentiation of human adipose-derived stem cells induced by NEL-like 1 protein[J]. Stem Cell Rev Rep202117(6):2276-2290. DOI:10.1007/s12015-021-10245-4.
[25]
Yuan X, Shi L, Guo Y,et al. METTL3 regulates ossification of the posterior longitudinal ligament via the lncRNA XIST/miR-302a-3p/USP8 axis[J]. Front Cell Dev Biol20219:629895. DOI:10.3389/fcell.2021.629895.
[26]
Yan G, Yuan Y, He M,et al. m6A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells[J]. Mol Ther Nucleic Acids202019:421-436. DOI:10.1016/j.omtn.2019.12.001.
[1] 陈犹白, 陈聪慧, Qixu Zhang, 韩岩. 脂肪干细胞成骨分化的研究进展[J]. 中华损伤与修复杂志(电子版), 2016, 11(02): 126-134.
[2] 柳成林, 荀文兴, 杨海珍, 范素萌, 刘宇博, 张红梅. 程序性坏死特异性抑制剂-1对高糖环境下牙周膜干细胞增殖和成骨分化的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 160-167.
[3] 陈伟洋, 田俊, 韦曦. 硅离子在骨组织修复再生领域的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 375-381.
[4] 李润泽, 任剑寒, 黄德兰, 罗皓天, 周晨, 王伟财. 长链非编码RNA调控成骨分化的研究现状及展望[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 271-279.
[5] 张弘, 姚宇, 孙佳栋, 于潇楠, 张志光. NELL-1调控RUNX2的P1启动子诱导成骨分化[J]. 中华口腔医学研究杂志(电子版), 2017, 11(04): 197-203.
[6] 刘冠琪, 麦志辉, 黄锦华, 陈琳, 陈奇, 陈正, 艾虹. 雌激素对大鼠骨髓间充质干细胞成骨分化及微小RNA表达的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 17-24.
[7] 戴旭彬, 王萧萧, 杨凡巧, 欧乾民, 姚斯琦, 王彦, 林雪峰. 雌激素对人牙周膜干细胞干性维持的影响[J]. 中华口腔医学研究杂志(电子版), 2016, 10(02): 104-111.
[8] 周冰, 王琤. DEPTOR通过与ErbB2相互作用促进人牙周膜干细胞增殖和成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 358-364.
[9] 刘一栋, 贾玉凤, 王燕, 刘扬, 宁金月. 大豆异黄酮上调Wnt-1基因表达促进骨髓间充质干细胞增殖和成骨分化的研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 292-297.
[10] 朱聪, 黄国锋, 江惠祥, 吴本文, 林剑彪, 林伟斌, 高明明, 丁真奇. 间歇式轴向压应力对组织工程骨种子细胞的黏附增殖与成骨分化促进作用的研究[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(06): 334-342.
[11] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[12] 张伟丽, 罗敏, 彭江, 赵斌. BMP-2/Smads信号通路促进骨代谢失衡大鼠骨髓间充质干细胞的成骨分化[J]. 中华老年骨科与康复电子杂志, 2021, 07(02): 65-72.
[13] 邬波, 柳椰, 马旭, 智春升, 杜明昌, 翟良全, 杨政博, 王佳媛, 王译晗. 3D打印胶原/羟基磷灰石支架对骨髓间充质干细胞成骨分化的作用研究[J]. 中华老年骨科与康复电子杂志, 2020, 06(03): 123-127.
[14] 张叶, 庄秀妹, 张越, 王勤, 彭雪珍. p53在低氧抑制人牙周膜成纤维细胞成骨分化中的作用[J]. 中华临床医师杂志(电子版), 2018, 12(09): 518-524.
[15] 周敏, 武东辉, 吴亚霖, 庞静雯, 庄秀妹. 亲水性钛表面微纳米形貌对大鼠骨髓间充质干细胞增殖与成骨分化的影响[J]. 中华临床医师杂志(电子版), 2018, 12(02): 98-102.
阅读次数
全文


摘要