切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 271 -279. doi: 10.3877/cma.j.issn.1674-1366.2020.05.001

所属专题: 口腔医学 文献

中青年专家笔谈

长链非编码RNA调控成骨分化的研究现状及展望
李润泽1, 任剑寒1, 黄德兰1, 罗皓天1, 周晨1, 王伟财1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2020-02-05 出版日期:2020-10-01
  • 通信作者: 王伟财

Research progress and prospects of long non-coding RNA regulating osteogenic differentiation

Runze Li1, Jianhan Ren1, Delan Huang1, Haotian Luo1, Chen Zhou1, Weicai Wang1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincal Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2020-02-05 Published:2020-10-01
  • Corresponding author: Weicai Wang
  • About author:
    Corresponding author: Wang Weicai, Email:
  • Supported by:
    National Key Research & Development (R & D) Plan Program(2016YFC20160905203); National Natural Science Foundation of China(81600824); Natural Science Foundation of Guangdong Province(2018A030310278); Science and Technology Program of Guangzhou(201707010106, 201804010459)
引用本文:

李润泽, 任剑寒, 黄德兰, 罗皓天, 周晨, 王伟财. 长链非编码RNA调控成骨分化的研究现状及展望[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 271-279.

Runze Li, Jianhan Ren, Delan Huang, Haotian Luo, Chen Zhou, Weicai Wang. Research progress and prospects of long non-coding RNA regulating osteogenic differentiation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(05): 271-279.

颅颌面骨缺损或异常不仅会造成相应功能的障碍,还会影响患者的美观及心理健康。间充质干细胞向成骨细胞谱系分化是骨组织发生与形成的物质基础,也是维持骨稳态的重要因素。成骨分化异常既与多种骨相关疾病有着密切关系,也会对骨组织修复产生消极影响。长链非编码RNA作为近年来新发现的调控因子,在成骨分化过程中发挥着重要的作用。本文拟阐述目前在成骨分化方面起重要调控作用的lncRNA及其机制,并探讨目前研究存在的不足及未来的发展前景。

Defect and abnormity of craniofacial bones not only cause corresponding functional disorders, but also affect the outlooking and mental health of patients. The osteogenic differentiation from mesenchymal stem cells to osteoblast lineage is not only the foundation of osteogenesis, but also one of the key factors maintaining bone homeostasis. Abnormal osteogenic differentiation is strongly relative to many bone diseases and has side effects on bone regeneration. As a newly discovered regulatory factor, long non-coding RNA plays an important role in osteogenic differentiation. This article focused on the long non-coding RNA that played important roles in regulating osteogenic differentiation, discussing the mechanisms, existing problems as well as prospects.

表1 与间充质干细胞成骨分化相关的长链非编码RNA
图1 长链非编码RNA(lncRNA)调控成骨分化的相关机制LncRNA可在基因表达表观遗传水平、转录水平、转录后水平等发挥调控成骨分化的作用,参与骨多种生理及病理过程。A:LncRNA在基因表观遗传水平的调控:lncRNA ODIR1通过募集CUL3,介导FBXO25的降解,从而抑制FBXO25对OSX启动子区域H2BK120ub与H3K4me3修饰,进而抑制OSX的表达,最终抑制hUC-MSC成骨向的分化;B:LncRNA在基因转录水平的调控:lncRNA TUG1可在胞质结合p-SMAD5蛋白,抑制其核转位,从而显著抑制hBMSC的成骨分化;C:LncRNA调控pre-mRNA的选择性剪接:lncRNA RUNX2-AS1可通过特异性结合RUNX2 pre-mRNA的第七号内含子,从而阻止其后续的选择性剪接,进而抑制RUNX2的表达及hBMSC的成骨向分化;D:LncRNA调控miRNA的功能:lncRNA TCONS_00041960可通过ceRNA机制,富集miR-204-5p,解除其对Runx2的表达抑制,进而促进rBMSC成骨向分化
表2 长链非编码RNA(lncRNA)调控MSC成骨分化的研究总结
LncRNA 细胞模型 体内验证 调控机制 相关信号通路 作用效果 参考文献 年份
NKILA hMenSC & hUC-MSC NF-κB/HDAC2/RUNX2;RXFP1/Akt NF-κB通路;PI3K-Akt通路 促成骨 [54] 2020
FER1L4 hPDLSC miR-874-3p/VEGFA 未明确 促成骨 [55] 2020
LINC00707 hBMSC miR-145/LRP5/β-catenin Wnt/β-catenin通路 促成骨 [56] 2020
HOXA-AS2 hUC-MSC NF-κB/HDAC2/SP7 NF-κB通路 促成骨 [52] 2019
XIXT hBMSC miR-30a-5p/RUNX2 未明确 促成骨 [57] 2019
MSC-AS1 BMSC miR-140-5p/BMP2/Smad BMP通路 促成骨 [58] 2019
AK045490 MC3T3-E1 β-Catenin/TCF1/Runx2 Wnt/β-Catenin通路 抑制成骨 [40] 2019
LncRNA-OG hBMSC hnRNPK/LncRNA-OG/BMP family BMP通路 促成骨 [21] 2019
HOXC-AS3 hBMSC;U266 cell line 提高HOXC10 mRNA稳定性 未明确 抑制成骨 [42] 2019
LOC103691336 rBMSC miR-138-5p/BMP2 BMP通路 促成骨 [50] 2019
ODIR1 hUC-MSC CUL3/FBXO25/OSX 未明确 抑制成骨 [35] 2019
HOTAIRM1 hMenSC;hUC-MSC JNK/c-Jun/P300/RUNX2 JNK/AP-1通路 抑制成骨 [36] 2019
? hDFSC DNMT1/HOXA2 未明确 促成骨 [37] 2020
SNHG1 mBMSC Nedd4/p38 P38 MAPK通路 抑制成骨 [59] 2019
PCAT1 hASC miR-145-5p/TLR4 TLR通路 促成骨 [20] 2018
HIF1A-AS2 hADSC miR-665/IL6/PI3K/Akt PI3K/Akt通路 促成骨 [25] 2018
RUNX2-AS1 hBMSC 抑制RUNX2 pre-mRNA选择性剪接 未明确 抑制成骨 [41] 2018
DANCR hBMSC 抑制p38磷酸化 P38 MAPK通路 抑制成骨 [53] 2018
H19 mBMSC miR-188/LCoR 不明 促成骨 [29] 2018
? hBMSC miR-138/PTK2 PTK通路 促成骨 [60] 2018
KCNQ1OT1 mMSC 与Wnt/β-catenin通路相关 Wnt/β-catenin通路 促成骨 [46] 2018
Linc-ROR hBMSC miR-138 & miR-145/ZEB2/β-catenin Wnt/β-catenin通路 促成骨 [43] 2018
MEG3 hBMSC miR-133a-3p/SLC39A1 未明确 抑制成骨 [61] 2017
? hDFSC EZH2/β-catenin Wnt/β-catenin通路 抑制成骨 [62] 2018
TUG1 hPDLSC 募集LIN28A 未明确 促成骨 [63] 2018
? hBMSC 抑制p-SMAD5核转位 未明确 抑制成骨 [39] 2019
TCONS_00041960 rBMSC miR-204-5p/RUNX2 未明确 促成骨 [56] 2020
? hBMSC miR-143/OSX 未明确 促成骨 [64] 2018
MALAT1 hASC miR-30/RUNX2 未明确 促成骨 [65] 2019
? hBMSC & hFOB1.19 miR-34c/SATB2 未明确 促成骨 [66] 2019
[1]
Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements:Junk or Intimate Evolutionary Partners?[J]. Trends Genet,2019,35(12): 892-902. DOI: 10.1016/j.tig.2019.09.006.
[2]
Uszczynska-Ratajczak B, Lagarde J, Frankish A,et al. Towards a complete map of the human long non-coding RNA transcriptome[J]. Nat Rev Genet,2018,19(9): 535-548. DOI: 10.1038/s41576-018-0017-y.
[3]
Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs[J]. Nat Cell Biol,2019,21(5): 542-551. DOI: 10.1038/s41556-019-0311-8.
[4]
Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs:Key Regulators of Gene Expression[J]. Trends Genet,2018,34(2): 142-157. DOI: 10.1016/j.tig.2017.11.005.
[5]
Wu H, Yang L, Chen LL. The Diversity of Long Noncoding RNAs and Their Generation[J]. Trends Genet,2017,33(8): 540-552. DOI: 10.1016/j.tig.2017.05.004.
[6]
Wang KC, Chang HY. Molecular Mechanisms of Long Noncoding RNAs[J]. Mol Cell,2011,43(6): 904-914. DOI: 10.1016/j.molcel.2011.08.018.
[7]
Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function[J]. Genome Biol,2017,18(1): 206. DOI: 10.1186/s13059-017-1348-2.
[8]
Kaikkonen MU, Adelman K. Emerging Roles of Non-Coding RNA Transcription[J]. Trends Biochem Sci,2018,43(9): 654-667. DOI: 10.1016/j.tibs.2018.06.002.
[9]
Huang JZ, Chen M, Chen D,et al. A Peptide Encoded by a Putative LncRNA HOXB-AS3 Suppresses Colon Cancer Growth[J]. Molecular Cell,2017,68(1): 171-184.e6. DOI: 10.1016/j.molcel.2017.09.015.
[10]
Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration[J]. Adv Drug Deliv Rev,2015,94: 3-12. DOI: 10.1016/j.addr.2015.09.008.
[11]
Murshed M. Mechanism of Bone Mineralization[J]. Cold Spring Harbor Perspectives in Medicine,2018,8(12): a031229. DOI: 10.1101/cshperspect.a031229.
[12]
Lopes D, Martins-Cruz C, Oliveira MB,et al. Bone physiology as inspiration for tissue regenerative therapies[J]. Biomaterials,2018,185: 240-275. DOI: 10.1016/j.biomaterials.2018.09.028.
[13]
Wu M, Wang Y, Shao JZ,et al. Cbfβ Governs osteoblast-adipocyte lineage commitment through enhancing β-catenin signaling and suppressing adipogenesis gene expression[J]. Proc Natl Acad Sci U S A,2017,114(38): 10119-10124. DOI: 10.1073/pnas.1619294114.
[14]
Vimalraj S, Arumugam B, Miranda PJ,et al. Runx2:Structure,function,and phosphorylation in osteoblast differentiation[J]. Int J Biol Macromol,2015,78: 202-208. DOI: 10.1016/j.ijbiomac.2015.04.008.
[15]
An J, Yang H, Zhang Q,et al. Natural products for treatment of osteoporosis:The effects and mechanisms on promoting osteoblast-mediated bone formation[J]. Life Sci,2016,147: 46-58. DOI: 10.1016/j.lfs.2016.01.024.
[16]
Sinha KM, Zhou X. Genetic and molecular control of osterix in skeletal formation[J]. J Cell Biochem,2013,114(5): 975-984. DOI: 10.1002/jcb.24439.
[17]
Majidinia M, Sadeghpour A, Yousefi B. The Roles of Signaling Pathways in Bone Repair and Regeneration[J]. J Cell Physiol,2018,233(4): 2937-2948. DOI: 10.1002/jcp.26042.
[18]
Wang J, Liu S, Li J,et al. Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Stem Cell Res Ther,2019,10(1): 197. DOI: 10.1186/s13287-019-1309-7.
[19]
Zhang W, Dong R, Diao S,et al. Differential long noncoding RNA/mRNA expression profiling and functional network analysis during osteogenic differentiation of human bone marrow mesenchymal stem cells[J]. Stem Cell Res Ther,2017,8(1): 30. DOI: 10.1186/s13287-017-0485-6.
[20]
Yu L, Qu H, Yu Y,et al. LncRNA-PCAT1 targeting miR-145-5p promotes TLR4-associated osteogenic differentiation of adipose-derived stem cells[J]. J Cell Mol Med,2018,22(12): 6134-6147. DOI: 10.1111/jcmm.13892.
[21]
Tang S, Xie Z, Wang P,et al. LncRNA-OG Promotes the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Under the Regulation of HnRNPK[J]. Stem Cells,2019,37(2): 270-283. DOI: 10.1002/stem.2937.
[22]
Wang J, Miao J, Meng X,et al. Expression of long non-coding RNAs in human bone marrow mesenchymal stem cells co-cultured with human amnion-derived mesenchymal stem cells[J]. Molecular Medicine Reports,2017,16(5): 6683-6689. DOI: 10.3892/mmr.2017.7465.
[23]
Qiu X, Jia B, Sun X,et al. The Critical Role of Long Noncoding RNA in Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells[J]. Biomed Res Int,2017,2017: 5045827. DOI: 10.1155/2017/5045827.
[24]
Cui Y, Lu S, Tan H,et al. Silencing of Long Non-Coding RNA NONHSAT009968 Ameliorates the Staphylococcal Protein A-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells[J]. Cell Physiol Biochem,2016,39(4): 1347-1359. DOI: 10.1159/000447839.
[25]
Wu R, Ruan J, Sun Y,et al. Long non-coding RNA HIF1A-AS2 facilitates adipose-derived stem cells(ASCs)osteogenic differentiation through miR-665/IL6 axis via PI3K/Akt signaling pathway[J]. Stem Cell Res Ther,2018,9(1): 348. DOI: 10.1186/s13287-018-1082-z.
[26]
Huang G, Kang Y, Huang Z,et al. Identification and Characterization of Long Non-Coding RNAs in Osteogenic Differentiation of Human Adipose-Derived Stem Cells[J]. Cell Physiol Biochem,2017,42(3): 1037-1050. DOI: 10.1159/000478751.
[27]
Gu X, Li M, Jin Y,et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet,2017,18: 100. DOI: 10.1186/s12863-017-0569-4.
[28]
Sun X, Yuan Y, Xiao Y,et al. Long non-coding RNA,Bmcob,regulates osteoblastic differentiation of bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun,2018,506(3): 536-542. DOI: 10.1016/j.bbrc.2018.09.142.
[29]
Wang Y, Liu W, Liu Y,et al. Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of MBMSCs in mice through sponging MiR-188[J]. J Cell Physiol,2018,233(9): 7435-7446. DOI: 10.1002/jcp.26589.
[30]
Hou Q, Huang Y, Liu Y,et al. Profiling the miRNA-mRNA-lncRNA interaction network in MSC osteoblast differentiation induced by(+)-cholesten-3-one[J]. BMC Genomics,2018,19: 783. DOI: 10.1186/s12864-018-5155-2.
[31]
Song WQ, Gu WQ, Qian YB,et al. Identification of long non-coding RNA involved in osteogenic differentiation from mesenchymal stem cells using RNA-Seq data[J]. Genet Mol Res,2015,14(4): 18268-18279. DOI: 10.4238/2015.December.23.14.
[32]
Kim M, Yu Y, Moon JH,et al. Differential Expression Profiling of Long Noncoding RNA and mRNA during Osteoblast Differentiation in Mouse[J]. Int J Genomics,2018: 7691794. DOI: 10.1155/2018/7691794.
[33]
Zuo C, Wang Z, Lu H,et al. Expression Profiling of LncRNAs in C3H10T1/2 Mesenchymal Stem Cells Undergoing Early Osteoblast Differentiation[J]. Mol Med Rep,2013,8(2): 463-467. DOI: 10.3892/mmr.2013.1540.
[34]
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease[J]. Nature,2019,571(7766): 489-499. DOI: 10.1038/s41586-019-1411-0.
[35]
He S, Yang S, Zhang Y,et al. LncRNA ODIR1 Inhibits Osteogenic Differentiation of HUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX Axis[J]. Cell Death Dis,2019,10(12): 947. DOI: 10.1038/s41419-019-2148-2.
[36]
Fu L, Peng S, Wu W,et al. LncRNA HOTAIRM1 promotes osteogenesis by controlling JNK/AP-1 signalling-mediated RUNX2 expression[J]. J Cell Mol Med,2019,23(11): 7517-7524. DOI: 10.1111/jcmm.14620.
[37]
Chen Z, Zheng J, Hong H,et al. LncRNA HOTAIRM1 promotes osteogenesis of HDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro[J]. J Cell Physiol,2020: 1-13. DOI: 10.1002/jcp.29695.
[38]
Batista PJ, Chang HY. Long noncoding RNAs:cellular address codes in development and disease[J]. Cell,2013,152(6): 1298-1307. DOI: 10.1016/j.cell.2013.02.012.
[39]
Zhang W, Chen L, Wu J,et al. Long noncoding RNA TUG1 inhibits osteogenesis of bone marrow mesenchymal stem cells via Smad5 after irradiation[J]. Theranostics,2019,9(8): 2198-2208. DOI: 10.7150/thno.30798.
[40]
Li D, Yu K, Xiao T,et al. LOC103691336/MiR-138-5p/BMPR2 axis modulates Mg-mediated osteogenic differentiation in rat femoral fracture model and rat primary bone marrow stromal cells[J]. J Cell Physiol,2019,234(11): 21316-21330. DOI: 10.1002/jcp.28736.
[41]
Li B, Xu H, Han H,et al. Exosome-mediated transfer of lncRUNX2-AS1 from multiple myeloma cells to MSCs contributes to osteogenesis[J]. Oncogene,2018,37(41): 5508-5519. DOI: 10.1038/s41388-018-0359-0.
[42]
Li B, Han H, Song S,et al. HOXC10 Regulates Osteogenesis of Mesenchymal Stromal Cells Through Interaction with Its Natural Antisense Transcript LncHOXC-AS3[J]. Stem Cells,2019,37(2): 247-256. DOI: 10.1002/stem.2925.
[43]
Feng L, Shi L, Lu Y,et al. Linc-ROR Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Functioning as a Competing Endogenous RNA for miR-138 and miR-145[J]. Mol Ther Nucleic Acids,2018,11: 345-353. DOI: 10.1016/j.omtn.2018.03.004.
[44]
Shang G, Wang Y, Xu Y,et al. Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p[J]. J Cell Physiol,2018,233(8): 6041-6051. DOI: 10.1002/jcp.26424.
[45]
Huang P, Yan R, Zhang X,et al. Activating Wnt/β-catenin signaling pathway for disease therapy:Challenges and opportunities[J]. Pharmacol Ther,2019,196: 79-90. DOI: 10.1016/j.pharmthera.2018.11.008.
[46]
Gao X, Ge J, Li W,et al. LncRNA KCNQ1OT1 promotes osteogenic differentiation to relieve osteolysis via Wnt/β-catenin activation[J/OL]. Cell Biosci,2018,8: 19. DOI: 10.1186/s13578-018-0216-4.
[47]
Xu Y, Qin W, Guo D,et al. LncRNA-TWIST1 Promoted Osteogenic Differentiation Both in PPDLSCs and in HPDLSCs by Inhibiting TWIST1 Expression[J]. Biomed Res Int,2019,2019: 8735952. DOI: 10.1155/2019/8735952.
[48]
Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell,2003,113(6): 685-700. DOI: 10.1016/S0092-8674(03)00432-X
[49]
Budi EH, Duan D, Derynck R. Transforming Growth Factor-β Receptors and Smads:Regulatory Complexity and Functional Versatility[J]. Trends Cell Biol,2017,27(9): 658-672. DOI: 10.1016/j.tcb.2017.04.005.
[50]
Li D, Yu K, Xiao T,et al. LOC103691336/MiR-138-5p/BMPR2 axis modulates Mg-mediated osteogenic differentiation in rat femoral fracture model and rat primary bone marrow stromal cells[J]. J Cell Physiol,2019,234(11): 21316-21330. DOI: 10.1002/jcp.28736.
[51]
Mulero MC, Wang VYF, Huxford T,et al. Genome reading by the NF-ΚB transcription factors[J]. Nucleic Acids Research,2019,47(19): 9967-9989. DOI: 10.1093/nar/gkz739.
[52]
Zhu X, Yu J, Du J,et al. LncRNA HOXA-AS2 positively regulates osteogenesis of mesenchymal stem cells through inactivating NF-κB signalling[J]. J Cell Mol Med,2019,23(2): 1325-1332. DOI: 10.1111/jcmm.14034.
[53]
Zhang J, Tao Z, Wang Y. Long non-coding RNA DANCR regulates the proliferation and osteogenic differentiation of human bone-derived marrow mesenchymal stem cells via the p38 MAPK pathway[J]. Int J Mol Med,2018,41(1): 213-219. DOI: 10.3892/ijmm.2017.3215.
[54]
Zhang Y, Cao X, Li P,et al. LncRNA NKILA integrates RXFP1/AKT and NF-κB signalling to regulate osteogenesis of mesenchymal stem cells[J]. J Cell Mol Med,2020,24(1): 521-529. DOI: 10.1111/jcmm.14759.
[55]
Huang Y, Han Y, Guo R,et al. Long non-coding RNA FER1L4 promotes osteogenic differentiation of human periodontal ligament stromal cells via miR-874-3p and vascular endothelial growth factor A[J]. Stem Cell Res Ther,2020,11(1): 5. DOI: 10.1186/s13287-019-1519-z.
[56]
Cai WL, Zeng W, Liu HH,et al. LncRNA LINC00707 promotes osteogenic differentiation of hBMSCs through the Wnt/β-catenin pathway activated by LINC00707/miR-145/LRP5 axis[J]. Eur Rev Med Pharmacol Sci,2020,24(1): 18-28. DOI: 10.26355/eurrev_202001_19891.
[57]
Zhang HL, Du XY, Dong QR. LncRNA XIXT promotes osteogenic differentiation of bone mesenchymal stem cells and alleviates osteoporosis progression by targeting miRNA-30a-5p[J]. Eur Rev Med Pharmacol Sci,2019,23(20): 8721-8729. DOI: 10.26355/eurrev_201910_19266.
[58]
Zhang N, Hu X, He S,et al. LncRNA MSC-AS1 promotes osteogenic differentiation and alleviates osteoporosis through sponging microRNA-140-5p to upregulate BMP2[J]. Biochem Biophys Res Commun,2019,519(4): 790-796. DOI: 10.1016/j.bbrc.2019.09.058.
[59]
Jiang Y, Wu W, Jiao G,et al. LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells[J]. Life Sci,2019,228: 208-214. DOI: 10.1016/j.lfs.2019.05.002.
[60]
Wu J, Zhao J, Sun L,et al. Long non-coding RNA H19 mediates mechanical tension-induced osteogenesis of bone marrow mesenchymal stem cells via FAK by sponging miR-138[J]. Bone,2018,108: 62-70. DOI: 10.1016/j.bone.2017.12.013.
[61]
Wang Q, Li Y, Zhang Y,et al. LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p[J]. Biomed Pharmacother,2017,89: 1178-1186. DOI: 10.1016/j.biopha.2017.02.090.
[62]
Deng L, Hong H, Zhang X,et al. Down-regulated lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway[J]. Biochem Biophys Res Commun,2018,503(3): 2061-2067. DOI: 10.1016/j.bbrc.2018.07.160.
[63]
He Q, Yang S, Gu X,et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A[J]. Cell Death & Disease,2018,9(5): 455. DOI: 10.1038/s41419-018-0484-2.
[64]
Gao Y, Xiao F, Wang C,et al. Long noncoding RNA MALAT1 promotes osterix expression to regulate osteogenic differentiation by targeting miRNA-143 in human bone marrow-derived mesenchymal stem cells[J]. J Cell Biochem,2018,119(8): 6986-6996. DOI: 10.1002/jcb.26907.
[65]
Yi J, Liu D, Xiao J. LncRNA MALAT1 sponges miR-30 to promote osteoblast differentiation of adipose-derived mesenchymal stem cells by promotion of Runx2 expression[J]. Cell Tissue Res,2019,376(1): 113-121. DOI: 10.1007/s00441-018-2963-2.
[66]
Yang X, Yang J, Lei P,et al. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis[J]. Aging(Albany NY),2019,11(20): 8777-8791. DOI: 10.18632/aging.102264.
[67]
Cui Y, Fu S, Sun D,et al. EPC-derived exosomes promote osteoclastogenesis through LncRNA-MALAT1[J]. J Cell Mol Med,2019,23(6): 3843-3854. DOI: 10.1111/jcmm.14228.
[68]
Sun Z, Yang S, Zhou Q,et al. Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment[J]. Molecular Cancer,2018,17(1): 82. DOI: 10.1186/s12943-018-0831-z.
[69]
Li Y, Glass Z, Huang M,et al. Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications[J]. Biomaterials,2020,234: 119711. DOI: 10.1016/j.biomaterials.2019.119711.
[70]
Ma C, Kuzma ML, Bai X,et al. Biomaterial-Based Metabolic Regulation in Regenerative Engineering[J]. Advanced Sci,2019,6(19): 1900819. DOI: 10.1002/advs.201900819.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 王欢欢, 郑少祥, 郝金锦, 陈文亮. 胃癌分子分型的研究进展及相关联系[J]. 中华普通外科学文献(电子版), 2024, 18(03): 229-234.
[3] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[4] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[5] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[6] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[7] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[8] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[9] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[10] 王向前, 李清峰, 陈磊, 丘文丹, 姚志成, 李熠, 吴荣焕. 姜黄素抑制肝细胞癌索拉非尼耐药作用及其调控机制[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 729-735.
[11] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[12] 王浩年, 孙备, 陈华. 胆管内乳头状肿瘤的诊治策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 140-144.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
阅读次数
全文


摘要