切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 375 -381. doi: 10.3877/cma.j.issn.1674-1366.2021.06.008

综述

硅离子在骨组织修复再生领域的作用
陈伟洋1, 田俊1, 韦曦1,()   
  1. 1. 中山大学附属口腔医院,光华口腔医学院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2021-02-22 出版日期:2021-12-01
  • 通信作者: 韦曦

The role of silicon ion in the field of bone regeneration

Weiyang Chen1, Jun Tian1, Xi Wei1,()   

  1. 1. Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2021-02-22 Published:2021-12-01
  • Corresponding author: Xi Wei
  • Supported by:
    National Natural Science Foundation of China(81970925); Financial Fund for High-Caliber Hospital Construction of Guangdong Province(174-2018-XMZC-0001-03-0125/A-01)
引用本文:

陈伟洋, 田俊, 韦曦. 硅离子在骨组织修复再生领域的作用[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 375-381.

Weiyang Chen, Jun Tian, Xi Wei. The role of silicon ion in the field of bone regeneration[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2021, 15(06): 375-381.

硅离子参与调节骨生成、骨钙化的生理过程,在骨代谢中发挥着重要作用,硅离子缺乏将导致畸形骨的发生。含硅生物活性材料通过释放含硅离子产物以发挥促血管生成效应、促成骨效应、抑制破骨细胞分化效应及免疫调节效应,有效地促进骨组织修复与再生。本文就硅离子在骨组织修复再生领域的作用作一综述。

Silicon ion participates in the physiological process of bone tissue formation and bone tissue mineralization, and plays an important role in bone metabolism. Deficiency of Silicon will lead to bone deformation. Si-containing bioactive materials can promote angiogenesis as well as osteogenesis, on the other hand, inhibit osteoclast differentiation. These mterials also exert immunomodulatory effects through releasing Si-containing ionic products, which can effectively facilitate bone tissue repair and regeneration. In this paper, the role of silicon ion in the field of bone regeneration is reviewed.

[1]
Farmer VC. Sources and speciation of aluminium and silicon in natural waters[J]. Ciba Found Symp1986121:4-23. DOI:10.1002/9780470513323.ch2.
[2]
Pennington JA. Silicon in foods and diets[J]. Food Addit Contam19918(1):97-118. DOI:10.1080/02652039109373959.
[3]
Villota R, Hawkes JG. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide[J]. Crit Rev Food Sci Nutr198623(4):289-321. DOI:10.1080/10408398609527428.
[4]
Reffitt DM, Jugdaohsingh R, Thompson RP,et al. Silicic acid:Its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion[J]. J Inorg Biochem199976(2):141-147. DOI:10.1016/s0162-0134(99)00126-9.
[5]
Jugdaohsingh R. Silicon and bone health[J]. J Nutr Health Aging200711(2):99-110.
[6]
Zhou X, Moussa FM, Mankoci S,et al. Orthosilicic acid,Si(OH)4,stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation[J]. Acta Biomater201639:192-202. DOI:10.1016/j.actbio.2016.05.007.
[7]
Reffitt DM, Ogston N, Jugdaohsingh R,et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro[J]. Bone200332(2):127-135. DOI:10.1016/s8756-3282(02)00950-x.
[8]
吴成铁,常江.硅酸盐生物活性陶瓷用于骨组织修复及再生的研究[J].无机材料学报201328(1):29-39. DOI:10.3724/SP.J.1077.2013.12241.
[9]
陈慧敏,钟奇帜,黄紫华,等.改良扩孔介孔硅介导大鼠骨髓间充质干细胞成骨向分化[J/OL].中华口腔医学研究杂志(电子版)201812(3):135-143. DOI:10.3877/cma.j.issn.1674-1366.2018.03.001.
[10]
Li H, Chang J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect[J]. Acta Biomater20139(6):6981-6991. DOI:10.1016/j.actbio.2013.02.014.
[11]
Man Y, Wang P, Guo Y,et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres[J]. Biomaterials201233(34):8802-8811. DOI:10.1016/j.biomaterials.2012.08.054.
[12]
Huang Y, Wu C, Zhang X,et al. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration[J]. Acta Biomater201866:81-92. DOI:10.1016/j.actbio.2017.08.044.
[13]
Lou J, Tu Y, Li S,et al. Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2[J]. Biochem Biophys Res Commun2000268(3):757-762. DOI:10.1006/bbrc.2000.2210.
[14]
Schröder HC, Wang XH, Wiens M,et al. Silicate modulates the cross-talk between osteoblasts(SaOS-2)and osteoclasts(RAW 264.7 cells):Inhibition of osteoclast growth and differentiation[J]. J Cell Biochem2012113(10):3197-3206. DOI:10.1002/jcb.24196.
[15]
Dashnyam K, El-Fiqi A, Buitrago JO,et al. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials[J]. J Tissue Eng20178:2041731417707339. DOI:10.1177/2041731417707339.
[16]
Mao L, Xia L, Chang J,et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis,osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J]. Acta Biomater201761:217-232. DOI:10.1016/j.actbio.2017.08.015.
[17]
Monte FAD, Awad KR, Ahuja N,et al. Amorphous silicon oxynitrophosphide-coated implants boost angiogenic activity of endothelial cells[J]. Tissue Eng Part A202026(1-2):15-27. DOI:10.1089/ten.TEA.2019.0051.
[18]
Fu X, Liu P, Zhao D,et al. Effects of nanotopography regulation and silicon doping on angiogenic and osteogenic activities of hydroxyapatite coating on titanium implant[J]. Int J Nanomedicine202015:4171-4189. DOI:10.2147/ijn.S252936.
[19]
王苹苹,孔繁平,陈学群.低氧细胞应激的HIF-1信号通路[J].浙江大学学报(医学版)201140(5):559-566. DOI:10.3785/j.issn.1008-9292.2011.05.017.
[20]
Dashnyam K, Jin GZ, Kim JH,et al. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF[J]. Biomaterials2017116:145-157. DOI:10.1016/j.biomaterials.2016.11.053.
[21]
Wang C, Lin K, Chang J,et al. Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials201334(1):64-77. DOI:10.1016/j.biomaterials.2012.09.021.
[22]
Rocha FG, Sundback CA, Krebs NJ,et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine[J]. Biomaterials200829(19):2884-2890. DOI:10.1016/j.biomaterials.2008.03.026.
[23]
Esser S, Lampugnani MG, Corada M,et al. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells[J]. J Cell Sci1998111(Pt 13):1853-1865.
[24]
Wright TJ, Leach L, Shaw PE,et al. Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells[J]. Exp Cell Res2002280(2):159-168. DOI:10.1006/excr.2002.5636.
[25]
Li H, Xue K, Kong N,et al. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials201435(12):3803-3818. DOI:10.1016/j.biomaterials.2014.01.039.
[26]
Sun J, Wei L, Liu X,et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation,differentiation and gene expression[J]. Acta Biomater20095(4):1284-1293. DOI:10.1016/j.actbio.2008.10.011.
[27]
Edgar CM, Chakravarthy V, Barnes G,et al. Autogenous regulation of a network of bone morphogenetic proteins(BMPs)mediates the osteogenic differentiation in murine marrow stromal cells[J]. Bone200740(5):1389-1398. DOI:10.1016/j.bone.2007.01.001.
[28]
Miyazono K. TGF-β signaling by Smad proteins[J]. Cytokine Growth Factor Rev200011(1-2):15-22. DOI:10.1016/s1359-6101(99)00025-8.
[29]
Choi JY, Pratap J, Javed A,et al. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development[J]. Proc Natl Acad Sci U S A200198(15):8650-8655. DOI:10.1073/pnas.151236498.
[30]
Gu H, Guo F, Zhou X,et al. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway[J]. Biomaterials201132(29):7023-7033. DOI:10.1016/j.biomaterials.2011.06.003.
[31]
Ge C, Yang Q, Zhao G,et al. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity[J]. J Bone Miner Res201227(3):538-551. DOI:10.1002/jbmr.561.
[32]
Jansen T, Kvandová M, Daiber A,et al. The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation[J]. Antioxidants(Basel)20209(6):525. DOI:10.3390/antiox9060525.
[33]
Shin V, Zebboudj AF, Boström K. Endothelial cells modulate osteogenesis in calcifying vascular cells[J]. J Vasc Res200441(2):193-201. DOI:10.1159/000077394.
[34]
Deckers MM, van Bezooijen RL, van der Horst G,et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A[J]. Endocrinology2002143(4):1545-1553. DOI:10.1210/endo.143.4.8719.
[35]
Lei T, Zhang W, Qian H,et al. Silicon-incorporated nanohydroxyapatite-reinforced poly(ε-caprolactone)film to enhance osteogenesis for bone tissue engineering applications[J]. Colloids Surf B Biointerfaces2020187:110714. DOI:10.1016/j.colsurfb.2019.110714.
[36]
Seaborn CD, Nielsen FH. Dietary silicon affects acid and alkaline phosphatase and 45Calcium uptake in bone of rats[J]. J Trace Elem Exp Med19947(1):11-18.
[37]
Carlisle EM. Silicon:An essential element for the chick[J]. Science1972178(4061):619-621. DOI:10.1126/science.178.4061.619.
[38]
Boskey AL, Wright TM, Blank RD. Collagen and bone strength[J]. J Bone Miner Res199914(3):330-335. DOI:10.1359/jbmr.1999.14.3.330.
[39]
Bose S, Fielding G, Tarafder S,et al. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends Biotechnol201331(10):594-605. DOI:10.1016/j.tibtech.2013.06.005.
[40]
Birchall JD. The essentiality of silicon in biology[J]. Chemical Society Reviews199524(5):351-357. DOI:10.1039/cs9952400351.
[41]
Obata A, Iwanaga N, Terada A,et al. Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite[J]. J Mater Sci201752(15):8942-8956. DOI:10.1007/s10853-017-1057-y.
[42]
Magnusson C, Uribe P, Jugdaohsingh R,et al. Inhibitory effects of orthosilicic acid on osteoclastogenesis in RANKL-stimulated RAW264.7 cells[J]. J Biomed Mater Res A2021109(10):1967-1978. DOI:10.1002/jbm.a.37189.
[43]
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling[J]. J Biol Chem2010285(33):25103-25108. DOI:10.1074/jbc.R109.041087.
[44]
Mladenović Ž, Johansson A, Willman B,et al. Soluble silica inhibits osteoclast formation and bone resorption in vitro[J]. Acta Biomater201410(1):406-418. DOI:10.1016/j.actbio.2013.08.039.
[45]
Zhou X, Zhang N, Mankoci S,et al. Silicates in orthopedics and bone tissue engineering materials[J]. J Biomed Mater Res A2017105(7):2090-2102. DOI:10.1002/jbm.a.36061.
[46]
Matemba SF, Lie A, Ransjö M. Regulation of osteoclastogenesis by gap junction communication[J]. J Cell Biochem200699(2):528-537. DOI:10.1002/jcb.20866.
[47]
Donahue HJ, Qu RW, Genetos DC. Joint diseases:From connexins to gap junctions[J]. Nat Rev Rheumatol201714(1):42-51. DOI:10.1038/nrrheum.2017.204.
[48]
Ransjö M, Sahli J, Lie A. Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors[J]. Biochem Biophys Res Commun2003303(4):1179-1185. DOI:10.1016/s0006-291x(03)00502-3.
[49]
Major MR, Wong VW, Nelson ER,et al. The foreign body response:At the interface of surgery and bioengineering[J]. Plast Reconstr Surg2015135(5):1489-1498. DOI:10.1097/prs.0000000000001193.
[50]
Trindade R, Albrektsson T, Tengvall P,et al. Foreign body reaction to biomaterials:On mechanisms for buildup and breakdown of osseointegration[J]. Clin Implant Dent Relat Res201618(1):192-203. DOI:10.1111/cid.12274.
[51]
Zhu X, Yuan Z, Yan P,et al. Effect of iRoot SP and mineral trioxide aggregate(MTA)on the viability and polarization of macrophages[J]. Arch Oral Biol201780:27-33. DOI:10.1016/j.archoralbio.2017.03.010.
[52]
Andrade AS, Silva GF, Camilleri J,et al. Tissue response and immunoexpression of interleukin 6 promoted by tricalcium silicate-based repair materials after subcutaneous implantation in rats[J]. J Endod201844(3):458-463. DOI:10.1016/j.joen.2017.12.006.
[53]
Yuan Z, Zhu X, Li Y,et al. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide[J]. BMC Oral Health201818(1):56. DOI:10.1186/s12903-018-0511-9.
[54]
Yeh HW, Chiang CF, Chen PH,et al. Axl involved in mineral trioxide aggregate induces macrophage polarization[J]. J Endod201844(10):1542-1548. DOI:10.1016/j.joen.2018.07.005.
[55]
Yamazaki M, Fukushima H, Shin M,et al. Tumor necrosis factor alpha represses bone morphogenetic protein(BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB[J]. J Biol Chem2009284(51):35987-35995. DOI:10.1074/jbc.M109.070540.
[56]
Chang J, Wang Z, Tang E,et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB[J]. Nat Med200915(6):682-689. DOI:10.1038/nm.1954.
[57]
Bryan N, Ahswin H, Smart N,et al. Reactive oxygen species (ROS):A family of fate deciding molecules pivotal in constructive inflammation and wound healing[J]. Eur Cell Mater201224:249-265. DOI:10.22203/ecm.v024a18.
[58]
Gonzalez-Muñoz MJ, Meseguera I, Sanchez-Reus MI,et al. Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes[J]. Food Chem Toxicol200846(3):1111-1118. DOI:10.1016/j.fct.2007.11.006.
[59]
Kim EJ, Bu SY, Sung MK,et al. Analysis of antioxidant and anti-inflammatory activity of silicon in murine macrophages[J]. Biol Trace Elem Res2013156(1-3):329-337. DOI:10.1007/s12011-013-9829-y.
[60]
Ilyas A, Odatsu T, Shah A,et al. Amorphous silica:A new antioxidant role for rapid critical-sized bone defect healing[J]. Adv Healthc Mater20165(17):2199-2213. DOI:10.1002/adhm.201600203.
[61]
Durkin CA, Koester JA, Bender SJ,et al. The evolution of silicon transporters in diatoms[J]. J Phycol201652(5):716-731. DOI:10.1111/jpy.12441.
[62]
Gaur S, Kumar J, Kumar D,et al. Fascinating impact of silicon and silicon transporters in plants:A review[J]. Ecotoxicol Environ Saf2020202:110885. DOI:10.1016/j.ecoenv.2020.110885.
[1] 凡军, 曹丽萍. 异鼠李素激活p38信号促进鼠间充质干细胞成骨分化[J]. 中华关节外科杂志(电子版), 2021, 15(04): 432-437.
[2] 徐煜琛, 李璐, 薛冬令, 赵德伟. 外泌体介导股骨头坏死机制与治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(03): 247-252.
[3] 林伟斌, 朱聪, 洪海森, 黄国锋, 高明明, 吴进, 沙漠, 林灿斌, 陈娜娜, 张晓旭, 丁真奇. 体外周期性压应力对兔胫骨骨折愈合过程成骨与破骨细胞增殖分化能力的影响[J]. 中华损伤与修复杂志(电子版), 2021, 16(04): 289-300.
[4] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[5] 张佳园, 魏凌飞, 刘晶, 邬春兰, 叶丽娟, 于德栋. 新型硅橡胶印模消毒流程对模型精度的影响[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 285-291.
[6] 陈欣, 张校晨, 秦文, 金作林. 过表达甲基转移酶样3修复炎症来源牙周膜干细胞的成骨能力[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 15-25.
[7] 柳成林, 荀文兴, 杨海珍, 范素萌, 刘宇博, 张红梅. 程序性坏死特异性抑制剂-1对高糖环境下牙周膜干细胞增殖和成骨分化的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 160-167.
[8] 刘斌, 徐凯. 64排螺旋CT和宽体能谱CT在尘肺患者分期及二氧化硅沉积量评估中的作用[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 413-415.
[9] 周冰, 王琤. DEPTOR通过与ErbB2相互作用促进人牙周膜干细胞增殖和成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(06): 358-364.
[10] 刘一栋, 贾玉凤, 王燕, 刘扬, 宁金月. 大豆异黄酮上调Wnt-1基因表达促进骨髓间充质干细胞增殖和成骨分化的研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(05): 292-297.
[11] 毕靖茹, 王艺璇, 周广宇, 吴晨, 郭硕杰, 郑盼盼. 慢性肾脏病患者高钾血症药物治疗的新进展[J]. 中华肾病研究电子杂志, 2021, 10(03): 162-165.
[12] 林明玥, 周祁, 刘歆, 曲申, 陈开传, 吕筱, 韩雯婷, 毕燕龙. 术中光学相干断层扫描辅助玻璃体Berger腔切除术的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 199-204.
[13] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 张伟丽, 罗敏, 彭江, 赵斌. BMP-2/Smads信号通路促进骨代谢失衡大鼠骨髓间充质干细胞的成骨分化[J]. 中华老年骨科与康复电子杂志, 2021, 07(02): 65-72.
阅读次数
全文


摘要