[1] |
Farmer VC. Sources and speciation of aluminium and silicon in natural waters[J]. Ciba Found Symp, 1986, 121:4-23. DOI: 10.1002/9780470513323.ch2.
|
[2] |
|
[3] |
Villota R, Hawkes JG. Food applications and the toxicological and nutritional implications of amorphous silicon dioxide[J]. Crit Rev Food Sci Nutr, 1986, 23(4):289-321. DOI: 10.1080/10408398609527428.
|
[4] |
Reffitt DM, Jugdaohsingh R, Thompson RP,et al. Silicic acid:Its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion[J]. J Inorg Biochem, 1999, 76(2):141-147. DOI: 10.1016/s0162-0134(99)00126-9.
|
[5] |
Jugdaohsingh R. Silicon and bone health[J]. J Nutr Health Aging,2007,11(2):99-110.
|
[6] |
Zhou X, Moussa FM, Mankoci S,et al. Orthosilicic acid,Si(OH) 4,stimulates osteoblast differentiation in vitro by upregulating miR-146a to antagonize NF-κB activation[J]. Acta Biomater, 2016, 39:192-202. DOI: 10.1016/j.actbio.2016.05.007.
|
[7] |
Reffitt DM, Ogston N, Jugdaohsingh R,et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro[J]. Bone, 2003, 32(2):127-135. DOI: 10.1016/s8756-3282(02)00950-x.
|
[8] |
|
[9] |
|
[10] |
Li H, Chang J. Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect[J]. Acta Biomater, 2013, 9(6):6981-6991. DOI: 10.1016/j.actbio.2013.02.014.
|
[11] |
Man Y, Wang P, Guo Y,et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres[J]. Biomaterials, 2012, 33(34):8802-8811. DOI: 10.1016/j.biomaterials.2012.08.054.
|
[12] |
Huang Y, Wu C, Zhang X,et al. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration[J]. Acta Biomater, 2018, 66:81-92. DOI: 10.1016/j.actbio.2017.08.044.
|
[13] |
Lou J, Tu Y, Li S,et al. Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2[J]. Biochem Biophys Res Commun, 2000, 268(3):757-762. DOI: 10.1006/bbrc.2000.2210.
|
[14] |
Schröder HC, Wang XH, Wiens M,et al. Silicate modulates the cross-talk between osteoblasts(SaOS-2)and osteoclasts(RAW 264.7 cells):Inhibition of osteoclast growth and differentiation[J]. J Cell Biochem, 2012, 113(10):3197-3206. DOI: 10.1002/jcb.24196.
|
[15] |
Dashnyam K, El-Fiqi A, Buitrago JO,et al. A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials[J]. J Tissue Eng, 2017, 8:2041731417707339. DOI: 10.1177/2041731417707339.
|
[16] |
Mao L, Xia L, Chang J,et al. The synergistic effects of Sr and Si bioactive ions on osteogenesis,osteoclastogenesis and angiogenesis for osteoporotic bone regeneration[J]. Acta Biomater, 2017, 61:217-232. DOI: 10.1016/j.actbio.2017.08.015.
|
[17] |
Monte FAD, Awad KR, Ahuja N,et al. Amorphous silicon oxynitrophosphide-coated implants boost angiogenic activity of endothelial cells[J]. Tissue Eng Part A, 2020, 26(1-2):15-27. DOI: 10.1089/ten.TEA.2019.0051.
|
[18] |
Fu X, Liu P, Zhao D,et al. Effects of nanotopography regulation and silicon doping on angiogenic and osteogenic activities of hydroxyapatite coating on titanium implant[J]. Int J Nanomedicine, 2020, 15:4171-4189. DOI: 10.2147/ijn.S252936.
|
[19] |
|
[20] |
Dashnyam K, Jin GZ, Kim JH,et al. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF[J]. Biomaterials, 2017, 116:145-157. DOI: 10.1016/j.biomaterials.2016.11.053.
|
[21] |
Wang C, Lin K, Chang J,et al. Osteogenesis and angiogenesis induced by porous β-CaSiO 3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways[J]. Biomaterials, 2013, 34(1):64-77. DOI: 10.1016/j.biomaterials.2012.09.021.
|
[22] |
Rocha FG, Sundback CA, Krebs NJ,et al. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine[J]. Biomaterials, 2008, 29(19):2884-2890. DOI: 10.1016/j.biomaterials.2008.03.026.
|
[23] |
Esser S, Lampugnani MG, Corada M,et al. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells[J]. J Cell Sci,1998,111(Pt 13):1853-1865.
|
[24] |
Wright TJ, Leach L, Shaw PE,et al. Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells[J]. Exp Cell Res, 2002, 280(2):159-168. DOI: 10.1006/excr.2002.5636.
|
[25] |
Li H, Xue K, Kong N,et al. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35(12):3803-3818. DOI: 10.1016/j.biomaterials.2014.01.039.
|
[26] |
Sun J, Wei L, Liu X,et al. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation,differentiation and gene expression[J]. Acta Biomater, 2009, 5(4):1284-1293. DOI: 10.1016/j.actbio.2008.10.011.
|
[27] |
Edgar CM, Chakravarthy V, Barnes G,et al. Autogenous regulation of a network of bone morphogenetic proteins(BMPs)mediates the osteogenic differentiation in murine marrow stromal cells[J]. Bone, 2007, 40(5):1389-1398. DOI: 10.1016/j.bone.2007.01.001.
|
[28] |
|
[29] |
Choi JY, Pratap J, Javed A,et al. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development[J]. Proc Natl Acad Sci U S A, 2001, 98(15):8650-8655. DOI: 10.1073/pnas.151236498.
|
[30] |
Gu H, Guo F, Zhou X,et al. The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway[J]. Biomaterials, 2011, 32(29):7023-7033. DOI: 10.1016/j.biomaterials.2011.06.003.
|
[31] |
Ge C, Yang Q, Zhao G,et al. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity[J]. J Bone Miner Res, 2012, 27(3):538-551. DOI: 10.1002/jbmr.561.
|
[32] |
Jansen T, Kvandová M, Daiber A,et al. The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation[J]. Antioxidants(Basel), 2020, 9(6):525. DOI: 10.3390/antiox9060525.
|
[33] |
Shin V, Zebboudj AF, Boström K. Endothelial cells modulate osteogenesis in calcifying vascular cells[J]. J Vasc Res, 2004, 41(2):193-201. DOI: 10.1159/000077394.
|
[34] |
Deckers MM, van Bezooijen RL, van der Horst G,et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A[J]. Endocrinology, 2002, 143(4):1545-1553. DOI: 10.1210/endo.143.4.8719.
|
[35] |
Lei T, Zhang W, Qian H,et al. Silicon-incorporated nanohydroxyapatite-reinforced poly(ε-caprolactone)film to enhance osteogenesis for bone tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2020, 187:110714. DOI: 10.1016/j.colsurfb.2019.110714.
|
[36] |
Seaborn CD, Nielsen FH. Dietary silicon affects acid and alkaline phosphatase and 45Calcium uptake in bone of rats[J]. J Trace Elem Exp Med,1994,7(1):11-18.
|
[37] |
|
[38] |
Boskey AL, Wright TM, Blank RD. Collagen and bone strength[J]. J Bone Miner Res, 1999, 14(3):330-335. DOI: 10.1359/jbmr.1999.14.3.330.
|
[39] |
Bose S, Fielding G, Tarafder S,et al. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends Biotechnol, 2013, 31(10):594-605. DOI: 10.1016/j.tibtech.2013.06.005.
|
[40] |
Birchall JD. The essentiality of silicon in biology[J]. Chemical Society Reviews, 1995, 24(5):351-357. DOI: 10.1039/cs9952400351.
|
[41] |
Obata A, Iwanaga N, Terada A,et al. Osteoblast-like cell responses to silicate ions released from 45S5-type bioactive glass and siloxane-doped vaterite[J]. J Mater Sci, 2017, 52(15):8942-8956. DOI: 10.1007/s10853-017-1057-y.
|
[42] |
Magnusson C, Uribe P, Jugdaohsingh R,et al. Inhibitory effects of orthosilicic acid on osteoclastogenesis in RANKL-stimulated RAW264.7 cells[J]. J Biomed Mater Res A, 2021, 109(10):1967-1978. DOI: 10.1002/jbm.a.37189.
|
[43] |
Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling[J]. J Biol Chem, 2010, 285(33):25103-25108. DOI: 10.1074/jbc.R109.041087.
|
[44] |
Mladenović Ž, Johansson A, Willman B,et al. Soluble silica inhibits osteoclast formation and bone resorption in vitro[J]. Acta Biomater, 2014, 10(1):406-418. DOI: 10.1016/j.actbio.2013.08.039.
|
[45] |
Zhou X, Zhang N, Mankoci S,et al. Silicates in orthopedics and bone tissue engineering materials[J]. J Biomed Mater Res A, 2017, 105(7):2090-2102. DOI: 10.1002/jbm.a.36061.
|
[46] |
Matemba SF, Lie A, Ransjö M. Regulation of osteoclastogenesis by gap junction communication[J]. J Cell Biochem, 2006, 99(2):528-537. DOI: 10.1002/jcb.20866.
|
[47] |
Donahue HJ, Qu RW, Genetos DC. Joint diseases:From connexins to gap junctions[J]. Nat Rev Rheumatol, 2017, 14(1):42-51. DOI: 10.1038/nrrheum.2017.204.
|
[48] |
Ransjö M, Sahli J, Lie A. Expression of connexin 43 mRNA in microisolated murine osteoclasts and regulation of bone resorption in vitro by gap junction inhibitors[J]. Biochem Biophys Res Commun, 2003, 303(4):1179-1185. DOI: 10.1016/s0006-291x(03)00502-3.
|
[49] |
Major MR, Wong VW, Nelson ER,et al. The foreign body response:At the interface of surgery and bioengineering[J]. Plast Reconstr Surg, 2015, 135(5):1489-1498. DOI: 10.1097/prs.0000000000001193.
|
[50] |
Trindade R, Albrektsson T, Tengvall P,et al. Foreign body reaction to biomaterials:On mechanisms for buildup and breakdown of osseointegration[J]. Clin Implant Dent Relat Res, 2016, 18(1):192-203. DOI: 10.1111/cid.12274.
|
[51] |
Zhu X, Yuan Z, Yan P,et al. Effect of iRoot SP and mineral trioxide aggregate(MTA)on the viability and polarization of macrophages[J]. Arch Oral Biol, 2017, 80:27-33. DOI: 10.1016/j.archoralbio.2017.03.010.
|
[52] |
Andrade AS, Silva GF, Camilleri J,et al. Tissue response and immunoexpression of interleukin 6 promoted by tricalcium silicate-based repair materials after subcutaneous implantation in rats[J]. J Endod, 2018, 44(3):458-463. DOI: 10.1016/j.joen.2017.12.006.
|
[53] |
Yuan Z, Zhu X, Li Y,et al. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide[J]. BMC Oral Health, 2018, 18(1):56. DOI: 10.1186/s12903-018-0511-9.
|
[54] |
Yeh HW, Chiang CF, Chen PH,et al. Axl involved in mineral trioxide aggregate induces macrophage polarization[J]. J Endod, 2018, 44(10):1542-1548. DOI: 10.1016/j.joen.2018.07.005.
|
[55] |
Yamazaki M, Fukushima H, Shin M,et al. Tumor necrosis factor alpha represses bone morphogenetic protein(BMP) signaling by interfering with the DNA binding of Smads through the activation of NF-kappaB[J]. J Biol Chem, 2009, 284(51):35987-35995. DOI: 10.1074/jbc.M109.070540.
|
[56] |
Chang J, Wang Z, Tang E,et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB[J]. Nat Med, 2009, 15(6):682-689. DOI: 10.1038/nm.1954.
|
[57] |
Bryan N, Ahswin H, Smart N,et al. Reactive oxygen species (ROS):A family of fate deciding molecules pivotal in constructive inflammation and wound healing[J]. Eur Cell Mater, 2012, 24:249-265. DOI: 10.22203/ecm.v024a18.
|
[58] |
Gonzalez-Muñoz MJ, Meseguera I, Sanchez-Reus MI,et al. Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes[J]. Food Chem Toxicol, 2008, 46(3):1111-1118. DOI: 10.1016/j.fct.2007.11.006.
|
[59] |
Kim EJ, Bu SY, Sung MK,et al. Analysis of antioxidant and anti-inflammatory activity of silicon in murine macrophages[J]. Biol Trace Elem Res, 2013, 156(1-3):329-337. DOI: 10.1007/s12011-013-9829-y.
|
[60] |
Ilyas A, Odatsu T, Shah A,et al. Amorphous silica:A new antioxidant role for rapid critical-sized bone defect healing[J]. Adv Healthc Mater, 2016, 5(17):2199-2213. DOI: 10.1002/adhm.201600203.
|
[61] |
Durkin CA, Koester JA, Bender SJ,et al. The evolution of silicon transporters in diatoms[J]. J Phycol, 2016, 52(5):716-731. DOI: 10.1111/jpy.12441.
|
[62] |
Gaur S, Kumar J, Kumar D,et al. Fascinating impact of silicon and silicon transporters in plants:A review[J]. Ecotoxicol Environ Saf, 2020, 202:110885. DOI: 10.1016/j.ecoenv.2020.110885.
|