切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2022, Vol. 16 ›› Issue (03) : 160 -167. doi: 10.3877/cma.j.issn.1674-1366.2022.03.005

论著

程序性坏死特异性抑制剂-1对高糖环境下牙周膜干细胞增殖和成骨分化的影响
柳成林1, 荀文兴2, 杨海珍2, 范素萌2, 刘宇博2, 张红梅2,()   
  1. 1. 空军军医大学第二附属医院口腔科,西安 710038;解放军964医院口腔科,长春 130000
    2. 空军军医大学第二附属医院口腔科,西安 710038
  • 收稿日期:2022-02-22 出版日期:2022-06-01
  • 通信作者: 张红梅

Necrostatin-1 promotes the proliferation and osteogenic differentiation of periodontal ligament stem cells in high-glucose environment

Chenglin Liu1, Wenxing Xun2, Haizhen Yang2, Sumeng Fan2, Yubo Liu2, Hongmei Zhang2,()   

  1. 1. Department of Stomatology, the Second Affiliated Hospital, Air Force Medical University, Xi′an 710038, China; Department of Stomatology, 964th Hospital of the Chinese People′s Liberation Army, Changchun 130000, China
    2. Department of Stomatology, the Second Affiliated Hospital, Air Force Medical University, Xi′an 710038, China
  • Received:2022-02-22 Published:2022-06-01
  • Corresponding author: Hongmei Zhang
引用本文:

柳成林, 荀文兴, 杨海珍, 范素萌, 刘宇博, 张红梅. 程序性坏死特异性抑制剂-1对高糖环境下牙周膜干细胞增殖和成骨分化的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(03): 160-167.

Chenglin Liu, Wenxing Xun, Haizhen Yang, Sumeng Fan, Yubo Liu, Hongmei Zhang. Necrostatin-1 promotes the proliferation and osteogenic differentiation of periodontal ligament stem cells in high-glucose environment[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2022, 16(03): 160-167.

目的

探讨程序性坏死特异性抑制剂-1(Nec-1)对高糖环境下牙周膜干细胞(PDLSC)的增殖和成骨分化的影响。

方法

体外克隆培养的PDLSC,按照如下处理方法分为3组:对照组(5 mmol/L葡萄糖)、高糖组(25 mmol/L葡萄糖)和高糖+Nec-1组(25 mmol/L葡萄糖+30 μmol/L Nec-1)。通过蛋白免疫印迹(Western blot)检测细胞坏死性凋亡相关分子RIP1、RIP3的表达,噻唑蓝(MTT)比色法检测各组细胞增殖活力,通过茜素红染色、碱性磷酸酶(ALP)定量检测和实时荧光定量PCR等方法分析PDLSC的成骨分化情况。使用SPSS 26.0软件进行统计分析,采用单因素方差分析比较各组间细胞增殖活力(MTT吸光度A值)、ALP表达含量及成骨相关基因(COL1RUNX2OCN)相对表达水平,并用LSD-t检验进行组间多重比较。

结果

Western blot结果显示,高糖组PDLSC的RIP1和RIP3的表达较对照组明显增加,而高糖+Nec-1组的RIP1和RIP3的表达明显弱于高糖组。PDLSC培养7 d后,高糖组增殖活力较对照组明显降低,其吸光度A值(0.67 ± 0.06)显著低于对照组(1.23 ± 0.12),差异有统计学意义(t = 9.652,P<0.001);而Nec-1抑制后,PDLSC的增殖活力明显增加,高糖+Nec-1组吸光度A值(1.12 ± 0.11)显著高于高糖组(0.67 ± 0.06),差异有统计学意义(t = 8.185,P<0.001)。经矿化诱导后,高糖组PDLSC 14 d时形成的矿化结节、7 d时ALP表达含量(3.42 ± 0.37)和成骨相关基因COL1(1.86 ± 0.16)、RUNX2(1.55 ± 0.23)、OCN(1.08 ± 0.20)的相对表达量均较对照组均显著减少,差异均有统计学意义(tALP = 13.149,tCOL1 = 14.257,tRUNX2 = 7.593,tOCN = 8.606,P均<0.001);而Nec-1抑制后,PDLSC的成骨分化增加,高糖+Nec-1组PDLSC 14 d时形成的矿化结节、7 d时ALP表达含量(6.06 ± 0.26)和成骨相关基因COL1(3.64 ± 0.30)、RUNX2(2.53 ± 0.26)、OCN(2.14 ± 0.30)的相对表达量较高糖组均显著升高,差异均有统计学意义(tALP = 13.033,tCOL1 = 11.636,tRUNX2 = 6.332,tOCN = 6.573,P均<0.001)。

结论

体外培养条件下,高糖环境抑制了PDLSC的增殖和成骨分化,而Nec-1明显改善了高糖环境下PDLSC的增殖和成骨分化。

Objective

To investigate the effect of necrostatin-1 (Nec-1) on the biological characteristics of periodontal ligament stem cells (PDLSCs) in the high-glucose environments in vitro.

Methods

PDLSCs were successfully cultured by single colony and divided into three groups according to the following treatments: control group (5 mmol/L glucose) , high-glucose group (25 mmol/L glucose) , high-glucose + Nec-1 group (25 mmol/L glucose + 30 μmol/L Nec-1) . Western blot was used to detect the expression of necroptosis related molecules (RIP1 and RIP3) and the cell proliferation of PDLSCs were evaluated by MTT assay in the above three groups. The osteogenic differentiation of PDLSCs were evaluated by alizarin red staining, the quantitative detection of alkaline phosphatase (ALP) and real-time quantitative PCR assay. All statistical analyses were used SPSS 26.0 software. One way ANOVA was used to compare the cell proliferation activity (A value of the MTT absorbance) , the expression of ALP and the relative levels of osteogenesis related genes (COL1, RUNX2, OCN) among the groups, and the LSD-t test was used for multiple comparisons between the groups.

Results

Western blot showed that the expression levels of RIP1 and RIP3 in high-glucose group were significantly higher than those in control group, while significantly lower in high-glucose + Nec-1 group than in high-glucose group. The proliferation activity of PDLSCs at day 7 in high-glucose group was significantly lower than that in the control group, and its MTT absorbance (0.67 ± 0.06) was significantly lower than that of the control group (1.23 ± 0.12) (t = 9.652, P<0.001) . After the inhibition of Nec-1, the proliferation activity of PDLSCs increased significantly, and the MTT absorbance at day 7 of high-glucose + Nec-1 group (1.12±0.11) was significantly higher than that of high-glucose group (0.67±0.06) (t = 8.185, P<0.001) . Compared with the control group, the mineralized nodules formed by PDLSCs at day 14, the levels of ALP (3.42 ± 0.37) and the relative expression of osteogenesis related genes COL1 (1.86 ± 0.16) , RUNX2 (1.55 ± 0.23) , OCN (1.08 ± 0.20) at day 7 were significantly lower in high-glucose group (tALP = 13.149, tCOL1 = 14.257, tRUNX2 = 7.593, tOCN = 8.606, all P<0.001) . After the inhibition of Nec-1, the osteogenic differentiation of PDLSCs increased, and the mineralized nodules formed by PDLSCs at day 14, the levels of ALP (6.06±0.26) and the relative expression of osteogenesis related genes COL1 (3.64 ± 0.30) , RUNX2 (2.53 ± 0.26) , OCN (2.14 ± 0.30) at day 7 of high-glucose + Nec-1 group were significantly higher than those of high-glucose group (tALP = 13.033, tCOL1 = 11.636, tRUNX2 = 6.332, tOCN = 6.573, all P<0.001) .

Conclusions

The proliferation and osteogenic differentiation of PDLSCs were inhibited in the high-glucose environments in vitro. Nec-1 significantly improved the proliferation and osteogenic differentiation of PDLSCs in the high-glucose environments.

表1 实时荧光定量PCR引物序列
图1 牙周膜干细胞(PDLSC)的特性 A:单个PDLSC(低倍放大);B:PDLSC克隆(w=0.5%甲苯胺蓝染色 低倍放大);C:肉眼观PDLSC克隆(w=0.5%甲苯胺蓝染色);D:第3代PDLSC(低倍放大);E:流式细胞检测PDLSC中STRO-1的表达。
图2 高糖环境对牙周膜干细胞中RIP1和RIP3表达的影响
表2 各组牙周膜干细胞(PDLSC)的增殖活力比较(MTT法检测490 nm波长吸光度A值)
图3 高糖环境下程序性坏死特异性抑制剂-1(Nec-1)对牙周膜干细胞(PDLSC)增殖的影响 组间比较差异有统计学意义(aP<0.05、bP<0.001)。
图4 程序性坏死特异性抑制剂-1(Nec-1)对高糖环境下牙周膜干细胞(PDLSC)矿化能力的影响 A:对照组;B:高糖组;C:高糖+Nec-1组。
图5 程序性坏死特异性抑制剂-1(Nec-1)对高糖环境下牙周膜干细胞(PDLSC)碱性磷酸酶(ALP)表达的影响 A:对照组矿化诱导7 d;B:高糖组矿化诱导7 d;C:高糖+Nec-1组矿化诱导7 d。
表3 各组牙周膜干细胞(PDLSC)的碱性磷酸酶表达含量比较(520 nm波长吸光度A值)
图6 程序性坏死特异性抑制剂-1(Nec-1)对高糖环境下牙周膜干细胞(PDLSC)碱性磷酸酶(ALP)表达的影响定量检测 组间比较差异有统计学意义(aP<0.01)。
表4 各组牙周膜干细胞(PDLSC)的成骨相关基因表达含量比较
图7 实时荧光定量PCR检测牙周膜干细胞(PDLSC)成骨相关基因的表达COL1为Ⅰ型胶原;RUNX2为RUNX家族转录因子2;OCN为骨钙素;组间比较差异有统计学意义(aP<0.001)。
[1]
Tomokiyo A, Wada N, Maeda H. Periodontal ligament stem cells:Regenerative potency in periodontium[J]. Stem Cells Dev201928(15):974-985. DOI:10.1089/scd.2019.0031.
[2]
Kato H, Taguchi Y, Tominaga K,et al. High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts[J]. J Periodontol201687(4):44-51. DOI:10.1902/jop.2015.150474.
[3]
Liu Q, Hu CH, Zhou CH,et al. DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis[J]. Sci Rep20155:13142. DOI:10.1038/srep13142.
[4]
Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis:An overview[J]. Cell Death Differ201724(7):1184-1195. DOI:10.1038/cdd.2017.65.
[5]
边东潇,包幸福,邬浩,等.利用细胞膜片技术进行牙周重建的研究进展[J/OL].中华口腔医学研究杂志(电子版)202115(2):119-123. DOI:10.3877/cma.j.issn.1674-1366.2021.02.010.
[6]
Trubiani O, Pizzicannella J, Caputi S,et al. Periodontal ligament stem cells:Current knowledge and future perspectives[J]. Stem Cells Dev201928(15):995-1003. DOI:10.1089/scd.2019.0025.
[7]
Zhang Z, Deng M, Hao M,et al. Periodontal ligament stem cells in the periodontitis niche:Inseparable interactions and mechanisms[J]. J Leukoc Biol2021110(3):565-576. DOI:10.1002/JLB.4MR0421-750R.
[8]
Nagata M, Iwasaki K, Akazawa K,et al. Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration[J]. Tissue Eng Part A201723(9/10):367-377. DOI:10.1089/ten.TEA.2016.0274.
[9]
Avinash K, Malaippan S, Dooraiswamy JN. Methods of isolation and characterization of stem cells from different regions of oral cavity using markers:A systematic review[J]. Int J Stem Cells201710(1):12-20. DOI:10.15283/ijsc17010.
[10]
Zhai Q, Dong Z, Wang W,et al. Dental stem cell and dental tissue regeneration[J]. Front Med201913(2):152-159. DOI:10.1007/s11684-018-0628-x.
[11]
Ayoub S, Berbéri A, Fayyad-Kazan M. An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine[J]. Mol Biol Rep202047(3):2381-2389. DOI:10.1007/s11033-020-05298-6.
[12]
Zheng DH, Han ZQ, Wang XX,et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell(PDLSCs)[J]. Chem Biol Interact2019305:40-47. DOI:10.1016/j.cbi.2019.03.007.
[13]
Jiang R, Wang M, Shen X,et al. SUMO1 modification of IGF-1R combining with SNAI2 inhibited osteogenic differentiation of PDLSCs stimulated by high glucose[J]. Stem Cell Res Ther202112(1):543. DOI:10.1186/s13287-021-02618-w.
[14]
Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways[J]. Cytokine Growth Factor Rev201738:98-105. DOI:10.1016/j.cytogfr.2017.11.001.
[15]
Kang P, Wang J, Fang D,et al. Activation of ALDH2 attenuates high glucose induced rat cardiomyocyte fibrosis and necroptosis[J]. Free Radic Biol Med2020146:198-210. DOI:10.1016/j.freeradbiomed.2019.10.416.
[16]
LaRocca TJ, Sosunov SA, Shakerley NL,et al. Hyperglycemic conditions prime cells for RIP1-dependent necroptosis[J]. J Biol Chem2016291(26):13753-13761. DOI:10.1074/jbc.M116.716027.
[17]
Feng M, Qiang H, Zhang RR,et al. Necrostatin-1 inhibits the cell death of osteoblasts induced by glucocorticoid[J]. Int J Clin Exp Pathol201811(2):675-684.
[18]
Yan B, Zhang H, Dai T. Necrostatin-1 promotes ectopic periodontal tissue like structure regeneration in LPS-treated PDLSCs[J]. PLoS One201813(11):e0207760. DOI:10.1371/journal.pone.0207760.
[19]
邬扬绚,向黎,黄志强,等.釉基质蛋白衍生物调节牙龈卟啉单胞菌感染牙周膜干细胞成骨分化的作用及机制[J].口腔医学研究202036(6):534-538. DOI:10.13701/j.cnki.kqyxyj.2020.06.008.
[20]
Yang S, Huang Y, Jian P,et al. Enhanced cell affinity and osteogenic differentiation of liquid crystal-based substrate via surface bio-functionalization[J]. J Biomed Mater Res A2021109(6):938-950. DOI:10.1002/jbm.a.37084.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[3] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[4] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[5] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[6] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要