切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 26 -36. doi: 10.3877/cma.j.issn.1674-1366.2023.01.004

论著

低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用
尹娟1, 杨兴2, 李平1, 徐旻馨3, 鲍玉3, 张志鹏3, 薛慧3,()   
  1. 1. 南京医科大学姑苏学院,南京医科大学附属苏州医院,苏州市立医院中心实验室,苏州 215008
    2. 南京医科大学姑苏学院,南京医科大学附属苏州医院,苏州市立医院骨科,苏州 215008
    3. 南京医科大学姑苏学院,南京医科大学附属苏州医院,苏州市立医院口腔科,苏州 215008
  • 收稿日期:2022-08-22 出版日期:2023-02-01
  • 通信作者: 薛慧

The mechanism of anti-inflammatory and antioxidant effects of low-intensity pulsed ultrasound on lipopolysaccharide-induced RAW264.7 macrophage differentiation

Juan Yin1, Xing Yang2, Ping Li1, Minxin Xu3, Yu Bao3, Zhipeng Zhang3, Hui Xue3,()   

  1. 1. Central Laboratory, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
    2. Department of Orthopedics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
    3. Department of Stomatology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou 215008, China
  • Received:2022-08-22 Published:2023-02-01
  • Corresponding author: Hui Xue
  • Supported by:
    Science and Technology Planning Project of Jiangsu Province(BE2022737); Science and Technology Development of Suzhou(SYSD2020245, SYS2020177, SKJY2021123); The Fifth Gusu Training Project of Medical Talents in Health System of Suzhou, Jiangsu Province(GSWS2019062, GSWS2020077)
引用本文:

尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.

Juan Yin, Xing Yang, Ping Li, Minxin Xu, Yu Bao, Zhipeng Zhang, Hui Xue. The mechanism of anti-inflammatory and antioxidant effects of low-intensity pulsed ultrasound on lipopolysaccharide-induced RAW264.7 macrophage differentiation[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(01): 26-36.

目的

研究低强度脉冲式超声波(LIPUS)对RAW264.7巨噬细胞极化的影响及相关分子机制。

方法

100 ng/mL脂多糖(LPS)和10 ng/mL白细胞介素(IL)-4诱导巨噬细胞RAW264.7分别向M1和M2型极化,45 mW/cm2强度LIPUS对巨噬细胞处理25 min。采用流式细胞术检测巨噬细胞氧化应激活性氧(ROS)水平、M1分化标志物CD80和CD11b,以及M2分化标志物CD163的表达水平。采用反转录聚合酶链反应(RT-PCR)技术检测CD80CD11b、核转录因子κBNF-κBp65、肿瘤坏死因子α(TNF-α)、白细胞介素(IL)-IL-6的mRNA水平。采用Western blot技术检测细胞p65、p-p65、TNF-α、IL-1β和IL-6表达水平。采用流式细胞术检测细胞培养上清TNF和IL-6表达水平。

结果

LIPUS可明显减少LPS诱导的RAW264.7细胞ROS水平。LPS诱导后,RAW264.7细胞M1分化标志物CD80和CD11b表达和转录水平均上调;LIPUS可抑制LPS对RAW264.7细胞向M1的诱导,差异具有统计学意义。并且,LIPUS可促进IL-4诱导的巨噬细胞M2分化标志物CD163表达。LPS诱导的RAW264.7细胞炎症因子NF-κB p65TNF-αIL-1βIL-6 mRNA水平上调,LIPUS可下调这些炎症因子的mRNA水平,差异均具有统计学意义。LIPUS抑制了LPS对RAW264.7细胞因子蛋白p65和p-p65、IL-1β、TNF-α和IL-6蛋白表达上调的作用。胰酶可以通过激活ROS-NF-κB通路,回复LIPUS促进巨噬细胞M1分化的作用。

结论

LIPUS可通过ROS-NF-κB抑制RAW264.7向巨噬细胞M1型分化,促进RAW264.7向巨噬细胞M2型分化。氧化应激和炎症因子表达水平被抑制。LIPUS可能在牙周疾病中起到抑制氧化和炎症的作用,从而发挥对牙周疾病的治疗功能。

Objective

To study the effects of low-intensity pulsed ultrasound (LIPUS) on the polarization of RAW264.7 macrophages and related molecular mechanisms.

Methods

Lipopolysaccharide (LPS, 100 ng/mL) or IL-4 (10 ng/mL) was used to induce M1 or M2 polarization of macrophages RAW264.7. The macrophages were treated with 45 mW/cm2 LIPUS for 25 min. Flow cytometry was used to detect the reactive oxygen species (ROS) level of macrophages and the expression levels of CD80 and CD11b, or CD163, which were markers of M1 or M2. The mRNA levels of CD80, CD11b, NF-κB p65, TNF-α, IL-1β and IL-6 were detected by RT-PCR. The expression levels of p65, p-p65, TNF-α, IL-1β and IL-6 were detected by Western blot. The expression levels of TNF and IL-6 in the supernatant of cell culture were detected by flow cytometry.

Results

LIPUS could significantly reduce the ROS level of LPS-induced RAW264.7 cells. After LPS induction, the expression and transcription levels of CD80 and CD11b, markers of M1 differentiation, were up-regulated in RAW 264.7 cells. LIPUS inhibited the differentiation induction of LPS on RAW264.7 cells to M1, and the difference was statistically significant. Moreover, LIPUS promoted the expression of CD163, a marker of M2. The mRNA levels of NF-κB p65, TNF-α, IL-1β and IL-6 in LPS-induced RAW264.7 cells were up-regulated, and LIPUS down-regulated the mRNA levels of these inflammatory factors, with statistically significant differences. LIPUS inhibited the up-regulation of RAW264.7 cytokine proteins p65 and p-p65, IL-1β, TNF-α and IL-6 by LPS. Trypsin restored the role of LIPUS in promoting macrophage M1 differentiation by activating the ROS-NF-κB pathway.

Conclusions

LIPUS inhibited the LPS-induced differentiation of RAW264.7 into macrophages M1 type through ROS-NF-κB, oxidative stress and the expression levels of inflammatory factors of RAW264.7. LIPUS promoted the M2 polarization of RAW264.7. LIPUS may play a therapeutic role in periodontal diseases by inhibiting M1 differentiation of macrophages, which reduced oxidative stress and inflammation.

表1 反转录聚合酶链反应(RT-PCR)引物序列
图1 低强度脉冲式超声波(LIPUS)抑制100 ng/mL脂多糖(LPS)诱导的RAW264.7细胞氧化水平 A:LPS诱导RAW264.7分化相差显微镜图;B:LPS诱导RAW264.7分化活性氧(ROS)染色荧光检测;C:LPS诱导RAW264.7分化ROS染色流式检测。
图2 活性氧(ROS)流式检测结果FITC通道平均荧光强度统计图 采用One-Way ANOVA分析统计组间差异,aP<0.05,bP<0.001。
图3 低强度脉冲式超声波(LIPUS)抑制脂多糖(LPS)诱导的RAW264.7细胞CD80表达 A:流式检测LPS和LIPUS处理后RAW264.7细胞前向散射光和侧向散射光信号变化;B:流式检测RAW264.7细胞巨噬细胞M1分化标志物CD80表达变化;C:流式检测CD80平均荧光强度差异统计;D:RT-PCR检测CD80 mRNA水平差异统计;采用One-Way ANOVA分析统计组间差异,aP<0.05,bP<0.001。
图4 低强度脉冲式超声波(LIPUS)抑制脂多糖(LPS)诱导的RAW264.7细胞CD11b表达 A:流式检测RAW264.7细胞巨噬细胞M1分化标志物CD11b表达变化。B:流式检测CD11b平均荧光强度差异统计图;C:RT-PCR检测CD11b mRNA水平差异统计图。采用One-Way ANOVA分析统计组间差异,aP<0.001,bP<0.05。
图5 低强度脉冲式超声波(LIPUS)促进白细胞介素(IL)-4诱导的RAW264.7向巨噬细胞M2型分化流式细胞图(CD163)
图6 流式检测CD163平均荧光强度差异统计图 采用One-Way ANOVA分析统计组间差异,aP<0.001。
图7 低强度脉冲式超声波(LIPUS)抑制脂多糖(LPS)诱导的RAW264.7炎症因子表达 RT-PCR检测p65(A)、TNF-α(B)、IL-1β(C)、IL-6(D)mRNA转录水平;采用One-Way ANOVA分析统计组间差异,aP<0.001,bP<0.05;E:Western blot分析p65、p-p65、TNF-α、IL-1β和IL-6蛋白表达水平;1:RAW;2:RAW+LPS;3:RAW+LPS+LIPUS;4:RAW+LIPUS。
图8 胰酶(Trypsin)回复低强度脉冲式超声波(LIPUS)对脂多糖(LPS)诱导的RAW264.7细胞活性氧(ROS)升高的抑制效应流式细胞图
图9 各组活性氧(ROS)平均荧光强度差异统计图 采用One-Way ANOVA分析统计组间差异,aP<0.001。
图10 胰酶(Trypsin)回复低强度脉冲式超声波(LIPUS)对脂多糖(LPS)诱导的RAW264.7细胞CD80上调的抑制效应流式细胞图
图11 各组CD80荧光强度统计图 采用One-Way ANOVA分析统计组间差异,aP<0.001,bP<0.05。
图12 Western blot检测胰酶(Trypsin)回复低强度脉冲式超声波(LIPUS)对脂多糖(LPS)诱导的RAW264.7细胞p65、p-p65、IL-6和TNF-α表达上调的抑制效应 1:RAW;2:RAW+LPS;3:RAW+LPS+LIPUS;4:RAW+LIPUS;5:RAW+LPS+LIPUS+Trypsin。
图13 流式细胞检测各组上清液中白细胞介素6(IL-6)和肿瘤坏死因子α(TNF-α)蛋白表达水平差异 采用One-Way ANOVA分析统计组间差异,aP<0.001,bP<0.05。
[1]
Zhang B, Chen H, Ouyang J,et al. SQSTM1-dependent autophagic degradation of PKM2 inhibits the production of mature IL1B/IL-1β and contributes to LIPUS-mediated anti-inflammatory effect[J]. Autophagy202016(7):1262-1278. DOI:10.1080/15548627.2019.1664705.
[2]
Ying S, Tan M, Feng G,et al. Low-intensity Pulsed Ultrasound regulates alveolar bone homeostasis in experimental Periodontitis by diminishing Oxidative Stress[J]. Theranostics202010(21):9789-9807. DOI:10.7150/thno.42508.
[3]
Crossman J, Alzaheri N, Abdallah MN,et al. Low intensity pulsed ultrasound increases mandibular height and Col-Ⅱ and VEGF expression in arthritic mice[J]. Arch Oral Biol2019104:112-118. DOI:10.1016/j.archoralbio.2019.05.032.
[4]
Kamatsuki Y, Aoyama E, Furumatsu T,et al. Possible reparative effect of low-intensity pulsed ultrasound(LIPUS)on injured meniscus[J]. J Cell Commun Signal201913(2):193-207. DOI:10.1007/s12079-018-0496-9.
[5]
Murakami R, Sanada T, Inagawa M,et al. Can low-intensity pulsed ultrasound(LIPUS)accelerate bone healing after intramedullary screw fixation for proximal fifth metatarsal stress fractures?A retrospective study[J]. BMC Musculoskelet Disord202122(1):725. DOI:10.1186/s12891-021-04611-z.
[6]
Zhang ZC, Yang YL, Li B,et al. Low-intensity pulsed ultrasound promotes spinal fusion by regulating macrophage polarization[J]. Biomed Pharmacother2019120:109499. DOI:10.1016/j.biopha.2019.109499.
[7]
Cuomo A, Pirozzi F, Tocchetti CG. Low-intensity pulsed ultrasound(LIPUS)in heart failure with preserved ejection fraction(HFpEF):Lupus in fabula?[J]. Cardiovasc Res2021117(5):1238-1240. DOI:10.1093/cvr/cvab069.
[8]
Li H, Zhou J, Zhu M,et al. Low-intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration[J]. J Biomed Mater Res A2021109(7):1101-1112. DOI:10.1002/jbm.a.37102.
[9]
晏殊瑾,杨珂,王河,等.低强度脉冲超声靶向纳米粒控释SDF-1及BMP-2调节hPDLCs迁移和成骨分化[J].中国超声医学杂志202238(2):222-226. DOI:10.3969/j.issn.1002-0101.2022.02.030.
[10]
Garaicoa-Pazmino C, Fretwurst T, Squarize CH,et al. Characterization of macrophage polarization in periodontal disease[J]. J Clin Periodontol201946(8):830-839. DOI:10.1111/jcpe.13156.
[11]
黎家君,刘玥,宋立婷,等.微RNA-126对牙龈卟啉单胞菌脂多糖刺激下人巨噬细胞极化的调节作用[J].中华口腔医学杂志202257(4):390-396. DOI:10.3760/cma.j.cn112144-20210701-00310.
[12]
Xu Z, Li S, Wan L,et al. Role of low-intensity pulsed ultrasound in regulating macrophage polarization to accelerate tendon-bone interface repair[J]. J Orthop Res2022. DOI:10.1002/jor.25454.
[13]
陈绩,杨传熙,徐天华,等.低强度脉冲式超声波对小鼠骨髓来源巨噬细胞极化和吞脂能力的影响[J].南京医科大学学报(自然科学版)202141(4):489-495. DOI:10.7655/NYDXBNS20210403.
[14]
李小英,李倩,崔博淼,等.慢性牙周炎患者唾液诱导巨噬细胞分化和活化的研究[J].华西口腔医学杂志201836(5):508-513. DOI:10.7518/hxkq.2018.05.009.
[15]
Zhang X, Fan L, Wu J,et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization[J]. J Hepatol201971(1):163-174. DOI:10.1016/j.jhep.2019.03.014.
[16]
Tsai CF, Chen GW, Chen YC,et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance[J]. Nutrients202114(1):67. DOI:10.3390/nu14010067.
[17]
Yang Q, Zhang R, Tang P,et al. Ultrasound may suppress tumor growth,inhibit inflammation,and establish tolerogenesis by remodeling innatome via pathways of ROS,immune checkpoints,cytokines,and trained immunity/tolerance[J]. J Immunol Res2021:6664453. DOI:10.1155/2021/6664453.
[18]
Liu C, Hu F, Jiao G,et al. Dental pulp stem cell-derived exosomes suppress M1 macrophage polarization through the ROS-MAPK-NFκB P65 signaling pathway after spinal cord injury[J]. J Nanobiotechnology202220(1):65. DOI:10.1186/s12951-022-01273-4.
[19]
李晖,杨永进,吕晓宁,等.低强度脉冲超声波辅助治疗中度和重度慢性牙周炎的临床观察[J].牙体牙髓牙周病学杂志201323(6):406-409. DOI:10.15956/j.cnki.chin.j.conserv.dent.2013.06.015.
[20]
Shirakata Y, Imafuji T, Sena K,et al. Periodontal tissue regeneration after low-intensity pulsed ultrasound stimulation with or without intra-marrow perforation in two-wall intra-bony defects—A pilot study in dogs[J]. J Clin Periodontol202047(1):54-63. DOI:10.1111/jcpe.13197.
[21]
Hazan-Molina H, Reznick AZ, Kaufman H,et al. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model[J]. J Periodontal Res201550(3):389-396. DOI:10.1111/jre.12218.
[22]
Liu S, Zhou M, Li J,et al. LIPUS inhibited the expression of inflammatory factors and promoted the osteogenic differentiation capacity of hPDLCs by inhibiting the NF-κB signaling pathway [J]. J Periodontal Res202055(1):125-140. DOI:10.1111/jre.12696.
[23]
Bang E, Kim DH, Chung HY. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging[J]. Redox Biol202144:102022. DOI:10.1016/j.redox.2021.102022.
[24]
Blaser H, Dostert C, Mak TW,et al. TNF and ROS crosstalk in inflammation[J]. Trends Cell Biol201626(4):249-261. DOI:10.1016/j.tcb.2015.12.002.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 韩媛媛, 热孜亚·萨贝提, 冒智捷, 穆福娜依·艾尔肯, 陆晨, 桑晓红, 阿尔曼·木拉提, 张丽. 组合式血液净化治疗对脓毒症患者血清炎症因子水平和临床预后的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 272-278.
[3] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[6] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[7] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[8] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[9] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[10] 苗软昕, 乔晞. Toll样受体在脓毒症性急性肾损伤中的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 210-214.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要