切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (01) : 17 -24. doi: 10.3877/cma.j.issn.1674-1366.2017.01.004

所属专题: 文献

基础研究

雌激素对大鼠骨髓间充质干细胞成骨分化及微小RNA表达的影响
刘冠琪1, 麦志辉1, 黄锦华1, 陈琳1, 陈奇1, 陈正1, 艾虹1,()   
  1. 1. 510630 广州,中山大学附属第三医院口腔医学部正畸科
  • 收稿日期:2016-12-26 出版日期:2017-02-01
  • 通信作者: 艾虹
  • 基金资助:
    国家自然科学基金(81470766)

Effect of estrogen on osteogenic differentiation and microRNAs expression in rat bone marrow mesenchymal stem cells

Guanqi Liu1, Zhihui Mai1, Jinhua Huang1, Lin Chen1, Qi Chen1, Zheng Chen1, Hong Ai1,()   

  1. 1. Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • Received:2016-12-26 Published:2017-02-01
  • Corresponding author: Hong Ai
  • About author:
    Corresponding author: Ai Hong, Email:
引用本文:

刘冠琪, 麦志辉, 黄锦华, 陈琳, 陈奇, 陈正, 艾虹. 雌激素对大鼠骨髓间充质干细胞成骨分化及微小RNA表达的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 17-24.

Guanqi Liu, Zhihui Mai, Jinhua Huang, Lin Chen, Qi Chen, Zheng Chen, Hong Ai. Effect of estrogen on osteogenic differentiation and microRNAs expression in rat bone marrow mesenchymal stem cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(01): 17-24.

目的

研究雌激素对大鼠骨髓间充质干细胞(BMSC)成骨分化以及对微小RNA(miR-20a、miR-29a)表达水平的影响。

方法

分离培养大鼠BMSC,将细胞分3组分别进行处理,使用完全培养基培养组作为空白对照记为CM,成骨诱导液培养组作为对照记为OM,成骨诱导液+17β雌二醇(E2)培养组作为实验组记为E2。细胞处理第1、5、9天进行碱性磷酸酶(ALP)活性检测;第5、9天,蛋白免疫印迹法(Western blot)检测成骨相关蛋白如Runt相关转录因子2(RUNX2)、骨形态发生蛋白2(BMP2)、骨桥蛋白(OPN)的表达情况,定量聚合酶链反应(PCR)检测miR-20a及miR29a的表达情况;第19天,茜素红染色检测矿化结节的形成情况。两组数据的结果进行两组独立样本的t检验,两组以上的数据进行单因素方差分析,检验水准为P<0.05。

结果

处理1 d后,各组ALP活性较低,组间差异无统计学意义(CM1 d:3.49,OM1 d:2.82,E21 d:2.92;F= 2.002,P= 0.216);5 d后,E2组及OM组ALP活性较1 d时明显提高(E21 d:2.92,E25 d:15.83;t= 5.065,P= 0.007;OM1 d:2.82,OM5 d:8.38;t= 13.39,P= 0.0002),5 d时E2的值为OM组的2倍、CM组的4倍,差异有统计学意义(F= 13.95,P= 0.0055);9 d后,各组ALP活性水平有明显增高(CM9 d:14.66,OM9 d:22.17,E29 d:45.99),约为5 d时的3倍(CM:t= 11.830,P= 0.0003;OM:t= 8.068,P= 0.0013;E2:t= 9.332,P= 0.0007),组间差异变化不明显,OM组约为CM组1.5倍,E2组约为OM组2倍,差异有统计学意义(F= 119.1,P<0.0001)。第5、9天,E2组成骨相关蛋白表达水平在均比OM、CM组高。第19天,E2组比OM组形成更多矿化结节。E2组miR-20a-5p表达水平在第5天为OM组的2倍(Mann-Whitney U= 20.000,P= 0.013),在第9天为OM组的1.5倍(Mann-Whitney U= 32.000,P= 0.079);而miR-29a-3p的表达水平相比OM组无明显变化(5 d:Mann-Whitney U= 0.000,P>0.999,Mann-Whitney U= 10.000,9 d:P= 0.680)。

结论

E2能促进大鼠BMSC的成骨分化,同时提高miR-20a-5p的表达水平。

Objective

To investigate the effect of estrogen on osteogenic differentiation and the expression levels of miR-20a, miR-29a in rat bone marrow mesenchymal stem cells (BMSCs) .

Methods

BMSCs were isolated and cultured, and were divided into 3 groups; Blank control group was cultured in complete medium and was named CM group; Control group was cultured in osteogenic differentiation medium and was named OM group; Treatment group was cultured in osteogenic differentiation medium containing 17β-estradiol (E2) and was named E2 group. Cells′ alkaline phosphatase activities were detected after being incubated for 1, 5, 9 days and the expression levels of osteogenic related proteins such as Runt-related transcription factor 2 (RUNX2) , bone morphogenetic protein 2 (BMP2) , Osteopontin (OPN) were detected in day 5 and 9 by western blot. Expression levels of miR-20a-5p, miR-29a-3p were detected in day 5 and 9 by quantitative polymerase chain reaction (qPCR) . The production of mineralized nodule were stained by Alizarin Red in day 19. The t test was used to compare differences between 2 groups and the One-Way ANOVA was used to compare differences among more than 2 groups. P<0.05 was considered statistically significant.

Results

Alp activities: In day 1, the figures were low in every group and there were no significant differences between each group (CM1 d: 3.49, OM1 d: 2.82, E21 d: 2.92; F= 2.002, P= 0.216) ; In day 5, the alp activities in OM group and E2 group raised markedly (E21 d: 2.92, E25 d: 15.83; t= 5.065, P= 0.007; OM1 d: 2.82, OM5 d: 8.38; t= 13.39, P= 0.0002) ; The figure in E2 group was significantly twice as in OM group and was four times as in CM group (F= 13.95, P= 0.0055) ; In day 9, alp activities increased significantly by 3 folds in all the groups compared with the figures in day 5 (CM9 d: 14.66, OM9 d: 22.17, E29 d: 45.99; CM: t= 11.830, P= 0.0003; OM: t= 8.068, P= 0.0013; E2: t= 9.332, P= 0.0007) ; The figure in OM group was 1.5 times as in CM group and the figure in E2 group was 2 times as in OM group (F= 119.1, P<0.0001) . In day 5 and 9, the expression levels of osteogenic related protein in E2 group were higher than OM or CM group. In day 19, E2 group produced more mineral nodules than OM group. The expression levels of miR-20a-5p in E2 group were high than OM group, increasing by 2 folds and 1.5 folds in day 5 and day 9 respectively (day 5: Mann-Whitney U= 20.000, P= 0.013; Mann-Whitney U= 32.000, P= 0.079) . However, the expression levels of miR-29a-3p did not have significant changes between different groups in these two time points (day 5: Mann-Whitney U= 0.000, P>0.999, Mann-Whitney U= 10.000, 9 d: P= 0.680) .

Conclusions

E2 promoted the osteogenic differentiation in rat BMSCs, and the expression level of miR-20a-5p increased during this process.

图1 大鼠骨髓间充质干细胞多向分化潜能验证
表1 大鼠骨髓间充质干细胞经成骨诱导培养不同时间后碱性磷酸酶活性(U/gprota±s
图2 大鼠骨髓间充质干细胞经成骨诱导培养不同时间的碱性磷酸酶活性
图3 大鼠骨髓间充质干细胞经成骨诱导培养5、9 d后成骨相关蛋白的表达情况
图4 大鼠骨髓间充质干细胞经成骨诱导培养19 d后矿化结节的产生情况
图5 雌二醇对大鼠骨髓间充质干细胞miR-20a-5p、miR-29a-3p表达水平的影响情况
[1]
Cauley JA. Estrogen and bone health in men and women[J]. Steroids,2015,99(Pt A):11-15.
[2]
Rickard DJ, Subramaniam M, Spelsberg TC. Molecular and cellular mechanisms of estrogen action on the skeleton[J]. J Cell Biochem,1999,76(Suppl 32-33):123-132.
[3]
Klein-Nulend J, van Oers RF, Bakker AD,et al. Bone cell mechanosensitivity,estrogen deficiency,and osteoporosis[J]. J Biomech,2015,48(5):855-865.
[4]
Riggs BL, Khosla S, Melton LR. A unitary model for involutional osteoporosis:estrogen deficiency causes both typeⅠ and typeⅡ osteoporosis in postmenopausal women and contributes to bone loss in aging men[J]. J Bone Miner Res,1998,13(5):763-773.
[5]
Rozenberg S, Vandromme J, Antoine C. Postmenopausal hormone therapy:risks and benefits[J]. Nat Rev Endocrinol,2013,9(4):216-227.
[6]
Kim RY, Yang HJ, Song YM,et al. Estrogen Modulates Bone Morphogenetic Protein-Induced Sclerostin Expression Through the Wnt Signaling Pathway[J]. Tissue Eng Part A,2015,21(13-14):2076-2088.
[7]
Yao XL, Li L, He XL,et al. Activation of β-catenin stimulated by mechanical strain and estrogen requires estrogen receptor in mesenchymal stem cells(MSCs)[J]. Eur Rev Med Pharmacol Sci,2014,18(21):3149-3155.
[8]
Chen J, Qiu M, Dou C,et al. MicroRNAs in Bone Balance and Osteoporosis[J]. Drug Dev Res,2015,76(5):235-245.
[9]
Zhang JF, Fu WM, He ML,et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J]. RNA Biol,2011,8(5):829-838.
[10]
Roberto VP, Tiago DM, Silva IA,et al. MiR-29a is an enhancer of mineral deposition in bone-derived systems[J]. Arch Biochem Biophys,2014(564):173-183.
[11]
Passos JS, Vianna MI, Gomes-Filho IS,et al. Osteoporosis/osteopenia as an independent factor associated with periodontitis in postmenopausal women:a case-control study[J]. Osteoporos Int,2013,24(4):1275-1283.
[12]
Dodd DZ, Rowe DJ. The relationship between postmenopausal osteoporosis and periodontal disease[J]. J Dent Hyg,2013,87(6):336-344.
[13]
Tera Tde M, Prado RF, De Marco AC,et al. The RANK/RANKL/OPG interaction in the repair of autogenous bone grafts in female rats with estrogen deficiency[J]. Braz Oral Res,2014,28(1):1-9.
[14]
Fujiwara Y, Piemontese M, Liu Y,et al. RANKL(Receptor Activator of NFκB Ligand)Produced by Osteocytes Is Required for the Increase in B Cells and Bone Loss Caused by Estrogen Deficiency in Mice[J]. J Biol Chem,2016,291(48):24838-24850.
[15]
Kassem M, Harris SA, Spelsberg TC,et al. Estrogen inhibits interleukin-6 production and gene expression in a human osteoblastic cell line with high levels of estrogen receptors[J]. J Bone Miner Res,1996,11(2):193-199.
[16]
Kimble RB, Srivastava S, Ross FP,et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1 and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production[J]. J Biol Chem,1996,271(46):28890-28897.
[17]
Yin X, Wang X, Hu X,et al. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways[J]. Exp Cell Res,2015,335(1):107-114.
[18]
Wade-Gueye NM, Boudiffa M, Vanden-Bossche A,et al. Absence of bone sialoprotein(BSP)impairs primary bone formation and resorption:the marrow ablation model under PTH challenge[J]. Bone,2012,50(5):1064-1073.
[19]
Komori T. Regulation of osteoblast differentiation by Runx2[J]. Adv Exp Med Biol,2010(658):43-49.
[20]
Hong L, Colpan A, Peptan IA. Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells[J]. Tissue Eng,2006,12(10):2747-2753.
[21]
Zhou S, Zilberman Y, Wassermann K,et al. Estrogen modulates estrogen receptor alpha and beta expression,osteogenic activity,and apoptosis in mesenchymal stem cells(MSCs)of osteoporotic mice[J]. J Cell Biochem Suppl,2001(Suppl 36):144-155.
[22]
Pangas SA. Bone morphogenetic protein signaling transcription factor(SMAD)function in granulosa cells[J]. Mol Cell Endocrinol,2012,356(1-2):40-47.
[23]
Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and bone formation[J]. Int J Biol Sci,2012,8(2):272-288.
[24]
Komori T. Regulation of osteoblast differentiation by transcription factors[J]. J Cell Biochem,2006,99(5):1233-1239.
[25]
Cho HJ, Cho HJ, Kim HS. Osteopontin:a multifunctional protein at the crossroads of inflammation,atherosclerosis,and vascular calcification[J]. Curr Atheroscler Rep,2009,11(3):206-213.
[26]
Chen N, Sui BD, Hu CH,et al. microRNA-21 Contributes to Orthodontic Tooth Movement[J]. J Dent Res,2016,95(12):1425-1433.
[27]
Yang M, Pan Y, Zhou Y. miR-96 promotes osteogenic differentiation by suppressing HBEGF-EGFR signaling in osteoblastic cells[J]. FEBS Lett,2014,588(24):4761-4768.
[28]
Mizuno Y, Yagi K, Tokuzawa Y,et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation[J]. Biochem Biophys Res Commun,2008,368(2):267-272.
[29]
Wei J, Shi Y, Zheng L,et al. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2[J]. J Cell Biol,2012,197(4):509-521.
[30]
Kim KM, Park SJ, Jung S,et al. miR-182 is a negative regulator of osteoblast proliferation,differentiation,and skeletogenesis through targeting FoxO1[J]. J Bone Miner Res,2012,27(8):1669-1679.
[31]
Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease[J]. Cancer J,2012,18(3):262-267.
[32]
Sun Q, Mao S, Li H,et al. Role of miR-17 family in the negative feedback loop of bone morphogenetic protein signaling in neuron[J]. PLoS One,2013,8(12):e83067.
[33]
Wang J, Greene SB, Bonilla-Claudio M,et al. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism[J]. Dev Cell,2010,19(6):903-912.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[4] 张巧梅, 孙小平, 李冠胜, 邓扬嘉. 针灸对大鼠呼吸机相关性肺炎中性粒细胞归巢及胞外诱捕网的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 265-271.
[5] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[6] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[7] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[8] 魏强, 张明祥, 陈强谱, 孙宝房. 增味小承气汤对梗阻性黄疸大鼠胃肠道动力的影响[J]. 中华普通外科学文献(电子版), 2023, 17(04): 267-270.
[9] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[10] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[11] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[12] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要