切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (01) : 12 -16. doi: 10.3877/cma.j.issn.1674-1366.2017.01.003

所属专题: 文献

基础研究

牙本质与复合树脂压缩蠕变行为匹配性的实验研究
张天漪1, 李湘霞1, 简裕涛2, 张新平3, 赵克1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室;510080 广州,广东省牙颌系统修复重建技术与材料工程技术研究中心
    2. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    3. 510640 广州,华南理工大学材料科学与工程学院
  • 收稿日期:2016-10-17 出版日期:2017-02-01
  • 通信作者: 赵克
  • 基金资助:
    国家自然科学基金(81470767)

Suitability between human dentine and resin-composite′s compressive creep behaviour: an in vitro study

Tianyi Zhang1, Xiangxia Li1, Yutao Jian2, Xinping Zhang3, Ke Zhao1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guangdong Engineering Research Center of Technology and Materials for Oral Restoration and Reconstruction, Guangzhou 510080, China
    2. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    3. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
  • Received:2016-10-17 Published:2017-02-01
  • Corresponding author: Ke Zhao
  • About author:
    Corresponding author: Zhao Ke, Email:
引用本文:

张天漪, 李湘霞, 简裕涛, 张新平, 赵克. 牙本质与复合树脂压缩蠕变行为匹配性的实验研究[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 12-16.

Tianyi Zhang, Xiangxia Li, Yutao Jian, Xinping Zhang, Ke Zhao. Suitability between human dentine and resin-composite′s compressive creep behaviour: an in vitro study[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(01): 12-16.

目的

研究人牙本质与复合树脂在相同实验条件下蠕变行为的匹配性。

方法

收集离体人磨牙切削制作圆柱体形态的牙本质试件20个,采用随机数表法随机分为D300与D50两组,每组10个试件。制作圆柱形复合树脂试件20个,采用随机数表法随机分为R300与R50组两组,每组10个。分别对D300与R300组的试件施加300 N载荷、D50与R50组施加50 N载荷至7200 s,每5秒记录1次应变,绘制应变-时间曲线并提取最大蠕变应变,使用两独立样本的t检验进行组间比较,检验水准为双侧α= 0.05。

结果

牙本质与复合树脂在实验条件下均表现出一定的蠕变行为,且蠕变曲线形态有差异。300 N载荷下牙本质最大蠕变应变为(2.953 ± 1.099)%,复合树脂最大蠕变应变为(1.370 ± 0.069)%,二者差异具有统计学意义(t= 4.54,P < 0.001);50 N载荷下牙本质最大蠕变应变为(1.490 ± 0.348)%,复合树脂最大蠕变应变为(0.483 ± 0.105)%,二者差异具有统计学意义(t= 8.76,P < 0.001)。

结论

相同实验条件下,相同载荷时牙本质蠕变较复合树脂蠕变明显。

Objective

To evaluate the suitability between human dentine and resin-composite′s compressive creep behavior under in vitro circumstances.

Methods

Twenty human dentine specimens were fabricated using molars free from fracture and irregularities in shape, and were then divided randomly into two groups, with ten specimens in each group. Twenty resin-composite specimens were prepared in a dental laboratory and divided randomly into two groups, with ten specimens in each group. Specimens were loaded for 7200 s under a constant compressive load of 300 and 50 N, respectively. After the data acquisition of compressive creep tests, the time-strain curves were drawn and the maximum creep strain was observed. Statistical analysis was performed using independent-samples t-test at a significance level of 0.05.

Results

Under the same in vitro testing conditions, creep behaviour was observed in both human dentine and resin-composite, yet the trend of the strain-time curves was different. Under the constant load of 300 N, the maximum creep strain of human dentine was (2.953 ± 1.099) %, significantly higher than that of the resin-composite (1.370 ± 0.069) % (t= 4.54, P < 0.001) . Under the constant load of 50 N, the maximum creep strain of dentine was (1.490 ± 0.348) %, significantly higher than that of the resin-composite (0.483 ± 0.105) % (t= 8.76, P < 0.001) .

Conclusion

Under the same in vitro testing conditions, the compressive creep occurred in human dentine was significantly higher than that in resin-composite.

表1 不同载荷下牙本质与复合树脂压缩蠕变测定结果(%)
图1 不同载荷下牙本质、复合树脂压缩蠕变应变-时间曲线
图2 汇总后不同载荷下牙本质与复合树脂的平均压缩蠕变应变-时间曲线
图3 典型的蠕变应变-时间曲线示意图[8]
[1]
Shillingburg HT, Sather DA, Stone SE. Fundamentals of fixed prosthodontics. 4th ed[M]. Surrey:Quintessence Pub. Co,2012:142-145.
[2]
Zhou J, Huang M, Sagnang F,et al. Interfacial failure of a dental cement composite bonded to glass substrates[J]. Dent Mater,2006,6(22):585-591.
[3]
Singh V, Misra A, Parthasarathy R,et al. Mechanical properties of methacrylate-based model dentin adhesives:effect of loading rate and moisture exposure[J] J Biomed Mater Res Part B Appl Biomater,2013,8(101):1437-1443.
[4]
孙训方,方孝淑,关来泰.材料力学(Ⅰ)[M]. 5版.北京:高等教育出版社,2013:27-28.
[5]
Singh V, Misra A, Marangos O,et al. Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives[J]. J Biomed Mater Res B Appl Biomater,2010,95B(2):283-290.
[6]
Singh V, Misra A, Parthasarathy R,et al. Viscoelastic properties of collagen-adhesive composites under water-saturated and dry conditions[J]. J Biomed Mater Res A,2014,103(2):646-657.
[7]
Habelitz S, Marshall GW Jr, Balooch M,et al. Nanoindentation and storage of teeth[J]. J Biomech,2002,35(7):995-998.
[8]
Fan X, Verpoest I, Pflug J,et al. Investigation of continuously produced thermoplastic honeycomb processing-partⅡ:fusion bonding[J]. J Sandw Struct Mater,2009,11(2-3):179-198.
[9]
Jafarzadeh T, Erfan M, Watts DC. Creep and viscoelastic behaviour of human dentine[J]. J Dent Tehran Univ Med Sci,2004,1(1):5-14.
[10]
Zhang J, Wang C, Yang F,et al. Nanoindentation creep behavior of enamel biological nanocomposites[J]. Rsc Adv,2014,4(77):41003-41009.
[11]
El-safty S, Silikas N, Akhtar R,et al. Nanoindentation creep versus bulk compressive creep of dental resin-composites[J]. Dent Mater,2012,28(11):1171-1182.
[12]
El-Safty S, Silikas N, Watts DC. Creep deformation of restorative resin-composites intended for bulk-fill placement[J]. Dent Mater,2012,28(8):928-935.
[13]
ISO 7616:1986 Cellular plastics,rigid--Determination of compressive creep under specified load and temperature conditions [S]. 1986.
[14]
Ruyter IE, Oysaed H. Compressive creep of light cured resin based restorative materials[J]. Acta Odont Scand,1982,40(5):319-324.
[15]
Pashley DH, Agee KA, Wataha JC,et al. Viscoelastic properties of demineralized dentin matrix[J]. Dent Mater,2003,19(8):700-706.
[16]
Jantarat J, Palamara JE, Lindner C,et al. Time-dependent properties of human root dentin[J]. Dent Mater,2002,18(6):486-493.
[17]
Chuang SF, Lin SY, Wei PJ,et al. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test[J]. J Biomech,2015,48(10):2155-2161.
[1] 任玲, 刘威震, 王小婷, 邵丽娜. 大块树脂微渗漏研究进展[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 314-319.
[2] 卞雨晴, 马一丹, 代东跃, 苏平, 贾梦奇, 战德松, 付佳乐. 不同浓度单宁酸在不同酸蚀模式下对通用型粘接剂粘接强度的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 221-227.
[3] 关丽娜, 杨帆, 尹东锋, 杨自更, 魏敦宏, 雒可夫, 王瑞. 低氧环境下Notch信号通路对人牙髓干细胞成牙本质向分化的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 214-220.
[4] 王晓, 倪龙兴, 田宇. 微创牙髓病学理念及微创髓腔预备方式[J]. 中华口腔医学研究杂志(电子版), 2020, 14(03): 133-137.
[5] 鄢晓媛, 陈玥, 李轲, 郑适泽, 战德松, 付佳乐. 交联剂在抑制基质金属蛋白酶与提高粘接耐久性领域的研究进展[J]. 中华口腔医学研究杂志(电子版), 2019, 13(05): 311-316.
[6] 古丽莎, 吴倩. 化学交联在牙本质粘接修复中的应用及展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 129-135.
[7] 谢丹丹, 麦穗, 吴倩, 赵曼多, 谭易, 古丽莎. 氧化海藻酸钠预处理提高树脂牙本质粘接的耐久性[J]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 329-334.
[8] 孟庆飞, 张甲第, 孟箭. 模拟牙冠延长术联合牙本质肩领设计对斜折残根抗折力的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 26-30.
[9] 邹蕊, 滕蕊, 王译婕, 董少杰, 张辉, 李晓红, 牛林. 增龄性变化对牙本质微观结构与力学特性的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(06): 341-345.
[10] 孟润莎, 莫泽欢, 徐琼. 脂磷壁酸诱导人成牙本质样细胞炎症微环境的机制研究[J]. 中华口腔医学研究杂志(电子版), 2017, 11(05): 257-265.
[11] 孟润莎, 徐琼. 成牙本质细胞在牙髓免疫防御中的作用研究进展[J]. 中华口腔医学研究杂志(电子版), 2017, 11(04): 238-241.
[12] 夏昕, 阮毅, 陈绛媛, 李博亚, 孔祥波, 伍虹. 地塞米松调控牙本质基质蛋白1在成骨细胞中的表达[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 81-85.
[13] 黄艳玲, 郑健茂, 凌均棨. 大鼠骨髓间充质干细胞成牙本质向分化中Wnt信号通路磷酸化抗体芯片分析[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 65-72.
[14] 宗丽, 温玉洁. 预防性使用脱敏剂对牙漂白术后牙齿敏感的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 41-44.
[15] 李博亚, 伍虹, 夏昕, 陈绛媛, 余艳崧, 庄沛林, 阮毅. 长链非编码RNA对牙本质基质蛋白1的调控机制[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 7-11.
阅读次数
全文


摘要