[1] |
Tjäderhane L, Larjava H, Sorsa T, et al. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions[J]. J Dent Res,1998,77(8): 1622-1629. DOI: 10.1177/00220345980770081001.
|
[2] |
Tezvergil-Mutluay A, Mutluay M, Seseogullari-Dirihan R, et al. Effect of phosphoric acid on the degradation of human dentin matrix[J]. J Dent Res,2013,92(1): 87-91. DOI: 10.1177/0022034512466264.
|
[3] |
Mazzoni A, Pashley DH, Nishitani Y, et al. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives[J]. Biomaterials,2006,27(25): 4470-4476. DOI: 10.1016/j.biomaterials.2006.01.040.
|
[4] |
Frassetto A, Breschi L, Turco G, et al. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability--A literature review[J]. Dent Mater,2016,32(2): e41-e53. DOI: 10.1016/j.dental.2015.11.007.
|
[5] |
Sabatini C, Pashley DH. Mechanisms regulating the degradation of dentin matrices by endogenous dentin proteases and their role in dental adhesion. A review[J]. Am J Dent,2014,27(4): 203-214.
|
[6] |
|
[7] |
|
[8] |
Tjäderhane L, Nascimento FD, Breschi L, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-A review[J]. Dent Mater,2013,29(10): 999-1011. DOI: 10.1016/j.dental.2013.07.016.
|
[9] |
Bedran-Russo AK, Pauli GF, Chen SN, et al. Dentin biomodification:strategies,renewable resources and clinical applications[J]. Dent Mater,2014,30(1): 62-76. DOI: 10.1016/j.dental.2013.10.012.
|
[10] |
Priyadarshini BM, Lu TB, Fawzy AS. Effect of photoactivated riboflavin on the biodegradation-resistance of root-dentin collagen[J]. J Photochem Photobiol B,2017,177: 18-23. DOI: 10.1016/j.jphotobiol.2017.10.012.
|
[11] |
Jain K, Beri L, Kunjir K, et al. Comparative evaluation of the effect of 10% sodium ascorbate,10% hesperidin,1% riboflavin 5 phosphate,collagen cross-linkers,on the pushout bond strength of fiber postluted to radicular dentin:In vitro study[J]. J Conserv Dent,2018,21(1): 95-99. DOI: 10.4103/jcd.Jcd_116_17.
|
[12] |
Cova A, Breschi L, Nato F, et al. Effect of UVA-activated riboflavin on dentin bonding[J]. J Dent Res,2011,90(12): 1439-1445. DOI: 10.1177/0022034511423397.
|
[13] |
Daood U, Matinlinna JP, Fawzy AS. Synergistic effects of VE-TPGS and riboflavin in crosslinking of dentine[J]. Dent Mater,2019,35(2): 356-367. DOI: 10.1016/j.dental.2018.11.031.
|
[14] |
Hiraishi N, Sono R, Sofiqul I, et al. In vitro evaluation of plant-derived agents to preserve dentin collagen[J]. Dent Mater,2013,29(10): 1048-1054. DOI: 10.1016/j.dental.2013.07.015.
|
[15] |
Sabatini C, Scheffel DL, Scheffel RH, et al. Inhibition of endogenous human dentin MMPs by Gluma[J]. Dent Mater,2014,30(7): 752-758. DOI: 10.1016/j.dental.2014.04.006.
|
[16] |
Seseogullari-Dirihan R, Mutluay MM, Pashley DH, et al. Is the inactivation of dentin proteases by crosslinkers reversible?[J]. Dent Mater,2017,33(2): e62-e68. DOI: 10.1016/j.dental.2016.09.036.
|
[17] |
Migneault I, Dartiguenave C, Bertrand MJ, et al. Glutaraldehyde:behavior in aqueous solution,reaction with proteins,and application to enzyme crosslinking[J]. Biotechniques,2004,37(5): 790-796,798-802. DOI: 10.2144/04375rv01.
|
[18] |
Chen C, Mao C, Sun J, et al. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen[J]. Mater Sci Eng C Mater Biol Appl,2016,67: 657-665. DOI: 10.1016/j.msec.2016.05.076.
|
[19] |
Hass V, Luque-Martinez IV, Gutierrez MF, et al. Collagen cross-linkers on dentin bonding:Stability of the adhesive interfaces,degree of conversion of the adhesive,cytotoxicity and in situ MMP inhibition[J]. Dent Mater,2016,32(6): 732-741. DOI: 10.1016/j.dental.2016.03.008.
|
[20] |
Singh P, Nagpal R, Singh UP, et al. Effect of carbodiimide on the structural stability of resin/dentin interface[J]. J Conserv Dent,2016,19(6): 501-509. DOI: 10.4103/0972-0707.194020.
|
[21] |
Tezvergil-Mutluay A, Mutluay MM, Agee KA, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs,in vitro[J]. J Dent Res,2012,91(2): 192-196. DOI: 10.1177/0022034511427705.
|
[22] |
Seseogullari-Dirihan R, Mutluay MM, Tjäderhane L, et al. Effect of pH on dentin protease inactivation by carbodiimide[J]. Eur J Oral Sci,2017,125(4): 288-293. DOI: 10.1111/eos.12354.
|
[23] |
Scheffel DL, Hebling J, Scheffel RH, et al. Stabilization of dentin matrix after cross-linking treatments,in vitro[J]. Dent Mater,2014,30(2): 227-233. DOI: 10.1016/j.dental.2013.11.007.
|
[24] |
Mazzoni A, Angeloni V, Comba A, et al. Cross-linking effect on dentin bond strength and MMPs activity[J]. Dent Mater,2018,34(2): 288-295. DOI: 10.1016/j.dental.2017.11.009.
|
[25] |
Mazzoni A, Apolonio FM, Saboia VP, et al. Carbodiimide inactivation of MMPs and effect on dentin bonding[J]. J Dent Res,2014,93(3): 263-268. DOI: 10.1177/0022034513516465.
|
[26] |
Shafiei F, Firouzmandi M, Zamanpour M. The effect of two cross-linking agents on dentin bond strength of resin-modified glass ionomer[J]. Eur J Dent,2017,11(4): 486-490. DOI: 10.4103/ejd.ejd_258_17.
|
[27] |
Maravic T, Breschi L, Comba A, et al. Experimental use of an acrolein-based primer as collagen cross-linker for dentine bonding[J]. J Dent,2018,68: 85-90. DOI: 10.1016/j.jdent.2017.11.006.
|
[28] |
Balalaie A, Rezvani MB, Mohammadi Basir M. Dual function of proanthocyanidins as both MMP inhibitor and crosslinker in dentin biomodification:A literature review[J]. Dent Mater J,2018,37(2): 173-182. DOI: 10.4012/dmj.2017-062.
|
[29] |
Liu RR, Fang M, Zhang L, et al. Anti-proteolytic capacity and bonding durability of proanthocyanidin-biomodified demineralized dentin matrix[J]. Int J Oral Sci,2014,6(3): 168-174. DOI: 10.1038/ijos.2014.22.
|
[30] |
Epasinghe DJ, Yiu CK, Burrow MF, et al. The inhibitory effect of proanthocyanidin on soluble and collagen-bound proteases[J]. J Dent,2013,41(9): 832-839. DOI: 10.1016/j.jdent.2013.06.002.
|
[31] |
Hass V, Luque-Martinez I, Muñoz MA, et al. The effect of proanthocyanidin-containing 10% phosphoric acid on bonding properties and MMP inhibition[J]. Dent Mater,2016,32(3): 468-475. DOI: 10.1016/j.dental.2015.12.007.
|
[32] |
|
[33] |
Parise Gré C, Pedrollo Lise D, Ayres AP, et al. Do collagen cross-linkers improve dentin′s bonding receptiveness?[J]. Dent Mater,2018,34(11): 1679-1689. DOI: 10.1016/j.dental.2018.08.303.
|
[34] |
Hechler B, Yao X, Wang Y. Proanthocyanidins alter adhesive/dentin bonding strengths when included in a bonding system[J]. Am J Dent,2012,25(5): 276-280.
|
[35] |
Savickiene N, Jekabsone A, Raudone L, et al. Efficacy of Proanthocyanidins from Pelargonium sidoides Root Extract in Reducing P.gingivalis Viability While Preserving Oral Commensal S.salivarius[J]. Materials(Basel),2018,11(9): 1499. DOI: 10.3390/ma11091499.
|
[36] |
慈向科,陈丽培,欧晓艳.葡萄籽原花青素对牙龈卟啉单胞菌内毒素的影响[J].上海口腔医学,2015,24(4): 433-436.
|
[37] |
Kim GE, Leme-Kraus AA, Phansalkar R, et al. Effect of Bioactive Primers on Bacterial-Induced Secondary Caries at the Tooth-Resin Interface[J]. Oper Dent,2017,42(2): 196-202. DOI: 10.2341/16-107-L.
|
[38] |
Silva AP, Gonçalves RS, Borges AF, et al. Effectiveness of plant-derived proanthocyanidins on demineralization on enamel and dentin under artificial cariogenic challenge[J]. J Appl Oral Sci,2015,23(3): 302-309. DOI: 10.1590/1678-775720140304.
|
[39] |
Varoni EM, Vijayakumar S, Canciani E, et al. Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration[J]. J Dent Res,2018,97(3): 303-311. DOI: 10.1177/0022034517736255.
|
[40] |
Qian Y, Song JL, Sun P, et al. Lactobacillus casei Strain Shirota Enhances the In Vitro Antiproliferative Effect of Geniposide in Human Oral Squamous Carcinoma HSC-3 Cells[J]. Molecules,2018,23(5): 1069. DOI: 10.3390/molecules23051069.
|
[41] |
Shindo S, Hosokawa Y, Hosokawa I, et al. Genipin inhibits MMP-1 and MMP-3 release from TNF-a-stimulated human periodontal ligament cells[J]. Biochimie,2014,107 Pt B: 391-395. DOI: 10.1016/j.biochi.2014.10.008.
|
[42] |
|
[43] |
|
[44] |
Buzalaf MA, Kato MT, Hannas AR. The role of matrix metalloproteinases in dental erosion[J]. Adv Dent Res,2012,24(2): 72-76. DOI: 10.1177/0022034512455029.
|
[45] |
Bae JY, Choi JS, Choi YJ, et al. (-)Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts:involvement of mitogen-activated protein kinase[J]. Food Chem Toxicol,2008,46(4): 1298-1307. DOI: 10.1016/j.fct.2007.09.112.
|
[46] |
Zarella BL, Buzalaf MA, Kato MT, et al. Cytotoxicity and effect on protease activity of copolymer extracts containing catechin[J]. Arch Oral Biol,2016,65: 66-71. DOI: 10.1016/j.archoralbio.2016.01.017.
|
[47] |
Vidal CM, Aguiar TR, Phansalkar R, et al. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins[J]. Acta Biomater,2014,10(7): 3288-3294. DOI: 10.1016/j.actbio.2014.03.036.
|
[48] |
|
[49] |
Yang H, Guo J, Deng D, et al. Effect of adjunctive application of epigallocatechin-3-gallate and ethanol-wet bonding on adhesive-dentin bonds[J]. J Dent,2016,44: 44-49. DOI: 10.1016/j.jdent.2015.12.001.
|
[50] |
Fialho MPN, Hass V, Nogueira RP, et al. Effect of epigallocatechin-3- gallate solutions on bond durability at the adhesive interface in caries-affected dentin[J]. J Mech Behav Biomed Mater,2019,91: 398-405. DOI: 10.1016/j.jmbbm.2018.11.022.
|
[51] |
Carvalho C, Fernandes FP, Freitas Vda P, et al. Effect of green tea extract on bonding durability of an etch-and-rinse adhesive system to caries-affected dentin[J]. J Appl Oral Sci,2016,24(3): 211-217. DOI: 10.1590/1678-775720150518.
|
[52] |
Khamverdi Z, Rezaei-Soufi L, Rostamzadeh T. The Effect of Epigallocatechin Gallate on the Dentin Bond Durability of Two Self-etch Adhesives[J]. J Dent (Shiraz),2015,16(2): 68-74.
|
[53] |
Yallapu MM, Jaggi M, Chauhan S. Curcumin Nanomedicine:A Road to Cancer Therapeutics[J]. Current pharmaceutical design,2013,19(11): 1994-2010.
|
[54] |
Farhood B, Mortezaee K, Goradel NH, et al. Curcumin as an anti-inflammatory agent:Implications to radiotherapy and chemotherapy[J]. J Cell Physiol,2019,234(5): 5728-5740. DOI: 10.1002/jcp.27442.
|
[55] |
Seseogullari-Dirihan R, Apollonio F, Mazzoni A, et al. Use of crosslinkers to inactivate dentin MMPs[J]. Dent Mater,2016,32(3): 423-432. DOI: 10.1016/j.dental.2015.12.012.
|
[56] |
Seseogullari-Dirihan R, Mutluay MM, Vallittu P, et al. Effect of pretreatment with collagen crosslinkers on dentin protease activity[J]. Dent Mater,2015,31(8): 941-947. DOI: 10.1016/j.dental.2015.05.002.
|
[57] |
|
[58] |
|
[59] |
|
[60] |
Boruziniat A, Babazadeh M, Gifani M, et al. Effect of Tannic Acid Application on Durability of Bond of Etch and Rinse Adhesive Resins[J]. Journal of Dental Materials and Techniques,2017,6(3): 125-130. DOI: 10.22038/jdmt.2017.9014.
|
[61] |
Bedran-Russo AK, Yoo KJ, Ema KC, et al. Mechanical properties of tannic-acid-treated dentin matrix[J]. J Dent Res,2009,88(9): 807-811. DOI: 10.1177/0022034509342556.
|
[62] |
徐国发,郑适萍,张建博,等.单宁酸在不同PH缓冲液条件下的含量变化[J].云南中医药杂志,2015,36(6): 88-90.
|
[63] |
Bhargava P, Verma VK, Malik S, et al. Hesperidin regresses cardiac hypertrophy by virtue of PPAR-gamma agonistic,anti-inflammatory,antiapoptotic,and antioxidant properties[J]. J Biochem Mol Toxicol,2019,33(5): e22283. DOI: 10.1002/jbt.22283.
|
[64] |
Hiraishi N, Maruno T, Tochio N, et al. Hesperidin interaction to collagen detected by physico-chemical techniques[J]. Dent Mater,2017,33(1): 33-42. DOI: 10.1016/j.dental.2016.09.035.
|
[65] |
Liu Z, Li F, Zhang L, et al. The effect of active components from citrus fruits on dentin MMPs[J]. Arch Oral Biol,2017,83: 111-117. DOI: 10.1016/j.archoralbio.2017.07.006.
|
[66] |
Islam MS, Hiraishi N, Nassar M, et al. Effect of hesperidin incorporation into a self-etching primer on durability of dentin bond[J]. Dent Mater,2014,30(11): 1205-1212. DOI: 10.1016/j.dental.2014.08.371.
|
[67] |
|