切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 221 -227. doi: 10.3877/cma.j.issn.1674-1366.2020.04.004

所属专题: 文献

基础研究

不同浓度单宁酸在不同酸蚀模式下对通用型粘接剂粘接强度的影响
卞雨晴1, 马一丹1, 代东跃1, 苏平1, 贾梦奇2, 战德松3, 付佳乐3,()   
  1. 1. 中国医科大学口腔医学院口腔医学专业,沈阳 110002
    2. 北京欢乐英卓医院管理有限公司医务部 100020
    3. 中国医科大学口腔医学院口腔材料学教研室,中国医科大学附属口腔医院修复二科,沈阳 110002
  • 收稿日期:2020-04-21 出版日期:2020-08-01
  • 通信作者: 付佳乐

Effect of tannic acid with different concentrations on bond strength under different etching modes

Yuqing Bian1, Yidan Ma1, Dongyue Dai1, Ping Su1, Mengqi Jia2, Desong Zhan3, Jiale Fu3,()   

  1. 1. School of Stomatology, China Medical University, Shenyang 110002, China
    2. Enjoy Dental, Beijing 100020, China
    3. Department of Dental Materials Science, The 2nd Department of Prosthodontics, School & Hospital of Stomatology, China Medical University, Shenyang 110002, China
  • Received:2020-04-21 Published:2020-08-01
  • Corresponding author: Jiale Fu
  • About author:
    Corresponding author: Fu Jiale, Email:
  • Supported by:
    Innovation and Entrepreneurship Training Program for College Students of Liaoning Province(1111251703)
引用本文:

卞雨晴, 马一丹, 代东跃, 苏平, 贾梦奇, 战德松, 付佳乐. 不同浓度单宁酸在不同酸蚀模式下对通用型粘接剂粘接强度的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 221-227.

Yuqing Bian, Yidan Ma, Dongyue Dai, Ping Su, Mengqi Jia, Desong Zhan, Jiale Fu. Effect of tannic acid with different concentrations on bond strength under different etching modes[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(04): 221-227.

目的

研究不同浓度单宁酸在全酸蚀与自酸蚀条件对通用型粘接剂在牙本质表面粘接强度的影响。

方法

将60颗无龋离体人磨牙置于存储盒中随机盲取分成2组(全酸蚀A组与自酸蚀B组,n = 30),再将每组随机分为5个亚组(n = 6)。在使用通用型粘接剂Single Bond Universal(SBU)前,在牙本质面分别涂抹浓度为0%(对照组)、25%、50%、75%和100%的单宁酸3 min并冲洗吹干。实验试件在37 ℃水中保存24 h后进行微拉伸强度测试(μTBSt)。使用Two-Way ANOVA与Games-Howell对数据进行统计学分析。用体式显微镜观察断裂面模式并在扫描电镜(SEM)下观察微拉伸试件的牙本质断端。

结果

在全酸蚀模式下,75%单宁酸组粘接强度[(34.51 ± 8.43)MPa]与100%单宁酸组粘接强度[(36.16 ± 5.20)MPa]显著高于其他各组(F = 32.301,P<0.001);在自酸蚀模式下,25%单宁酸[(31.06 ± 3.41)MPa]可显著提升SBU与牙本质粘接强度(F = 23.570,P<0.001)。双因素分析结果证实,单宁酸浓度(F = 23.134,P<0.001)与酸蚀模式(F = 4.465,P = 0.036)对粘接强度具有显著影响且两要素间显著相关(F = 28.231,P<0.001)。断裂模式分析与电镜观察结果表明,在牙本质表面不同酸蚀模式与不同浓度单宁酸所形成的界面形态差异显著。

结论

在不同酸蚀模式下,不同浓度的单宁酸均可显著改善SBU与牙本质的粘接强度。

Objective

To evaluate the effect of tannic acid with various concentrations on the bond strength between dentin and universal adhesive under the total and self-etching modes.

Methods

Sixty human molars without caries were randomly divided into two groups (group A: total-etching mode; group B: self-etching mode, n = 30) with five subgroups (n = 6) from the box blindly. After exposing its dentine, tannic acid with different concentrations of 0% (control group) , 25%, 50%, 75% and 100% was applied on dentin surface for 3 minutes with rinsing and air-blowing before Single Bond Universal (SBU) was used. Micro-tensile Bond Strength test (μTBSt) was carried out after 37 ℃ water-storage for 24 h. The data were analyzed by Two-Way ANOVA and Games-Howell test (α = 0.05) . Failure mode analysis and fracture surface observation on dentin side were done by stereomicroscope and electron scanning microscope (SEM) , respectively.

Results

In the total-etching mode, the bond strength of 75% and 100% concentration groups was significantly higher than that of the other groups (P<0.05) . In the self-etching mode, significantly higher bond strength than the rest was achieved by 25% concentration (P<0.05) . Two-Way ANOVA revealed a significant effect of tannic acid concentration (F = 23.134, P<0.001) and etching mode (F = 4.465, P = 0.036) on bond strength, while the interaction between two variables was also significant (F = 28.231, P<0.001) . The results of failure mode analysis and SEM observation indicated that the interfacial morphology on dentin created by both etching modes and different concentrations of tannic acid was significantly different.

Conclusion

The bond strength between dentin and SBU could be significantly improved by tannic acid with different concentrations in both total and self-etching modes.

图1 实验流程图 A:准备离体牙;B:暴露牙本质;C:预备粘接面并涂布单宁酸;D:冲洗后风吹;E:堆砌树脂及分层光固化;F:37 ℃水存24 h;G:微拉伸测试;H:观察断裂面
图2 体式显微镜下牙本质断裂模式示意图 A:树脂或牙本质内部断裂;B:树脂-牙本质粘接面断裂;C:混合断裂
图3 微拉伸测试结果 相同颜色柱状图上方的相同字母表示差异无统计学意义(P>0.05);同一单宁酸浓度条件下组间差异有统计学意义(fP<0.05)
表1 全酸蚀组和自酸蚀组试件断裂模式结果统计[例(%)]
图4 全酸蚀模式中牙本质断端粘接面扫描电镜下观察 A:0%单宁酸组;B:A图中白线框放大图;C:25%单宁酸组;D:50%单宁酸组(箭头所指为树脂栓);E:75%单宁酸组(箭头所指为树脂栓);F:100%单宁酸组
图5 自酸蚀模式中牙本质断端粘接面扫描电镜下观察 A:0%单宁酸组;B:25%单宁酸组(箭头所指为树脂突);C:50%单宁酸组(箭头所指为胶原纤维);D:75%单宁酸组;E:100%单宁酸组
[1]
付佳乐,陈丽薇,李斯文,等.六种自酸蚀粘接剂与牙本质粘接强度的研究[J].中国实用口腔科杂志,2017,10(3):163-167. DOI:10.19538/j.kq.2017.03.007.
[2]
Pashley DH,Tay FR,Breschi L,et al. State of the art etch-and-rinse adhesives[J]. Dent Mater,2011,27(1):1-16. DOI:10.1016/j.dental.2010.10.016.
[3]
Unemori M,Matsuya Y,Akashi A,et al. Self-etching adhesives and postoperative sensitivity[J]. Am J Dent,2004,17(3):191-195. DOI:10.1080/00016350410001504.
[4]
Van Landuyt KL,Mine A,De Munck J,et al. Are one-step adhesives easier to use and better performing?Multifactorial assessment of contemporary one-step self-etching adhesives[J]. J Adhes Dent,2009,11(3):175-190. DOI:10.0000/PMID19603581.
[5]
Yamauchi K,Tsujimoto A,Jurado CA,et al. Etch-and-rinse vs self-etch mode for dentin bonding effectiveness of universal adhesives[J]. J Oral Sci,2019,61(4):549-553. DOI:10.2334/josnusd.18-0433.
[6]
卞雨晴,马一丹,代东跃,等.单宁酸的生物学特征及在医学和口腔医学领域的应用价值[J].中国组织工程研究,2019,23(2):284-290. DOI:10.3969/j.issn.2095-4344.1516.
[7]
Díaz Carrasco JM,Redondo EA,Pin Viso ND,et al. Tannins and Bacitracin Differentially Modulate Gut Microbiota of Broiler Chickens[J]. Biomed Res Int,2018,2018:1879168. DOI:10.1155/2018/1879168.
[8]
Marrassini C,Peralta I,Anesini C. Comparative study of the polyphenol content-related anti-inflammatory and antioxidant activities of two Urera aurantiaca specimens from different geographical areas[J]. Chin Med,2018,13:22. DOI:10.1186/s13020-018-0181-1.
[9]
Aguiar Galvão WR,Braz Filho R,Canuto KM,et al. Gastroprotective and anti-inflammatory activities integrated to chemical composition of Myracrodruon urundeuva Allemão - a conservationist proposal for the species[J]. J Ethnopharmacol,2018,222:177-189. DOI:10.1016/j.jep.2018.04.024.
[10]
Savelyev N,Baykuzina P,Dokudovskaya S,et al. Comprehensive analysis of telomerase inhibition by gallotannin[J]. Oncotarget,2018,9(27):18712-18719. DOI:10.18632/oncotarget.24642.
[11]
Bedran-Russo AK,Pashley DH,Agee K,et al. Changes in stiffness of demineralized dentin following application of collagen crosslinkers[J]. J Biomed Mater Res B Appl Biomater,2008,86(2):330-334. DOI:10.1002/jbm.b.31022.
[12]
Boruziniat A,Babazadeh M,Gifani M,et al. Effect of Tannic Acid Application on Durability of Bond of Etch and Rinse Adhesive Resins[J]. J Dent Mater Tech,2017,6(3):125-130. DOI:10.22038/jdmt.2017.9014.
[13]
Sano H,Chowdhury AFMA,Saikaew P,et al. The microtensile bond strength test:Its historical background and application to bond testing[J]. Jpn Dent Sci Rev,2020,56(1):24-31. DOI:10.1016/j.jdsr.2019.10.001.
[14]
Sano H,Shono T,Sonoda H,et al. Relationship between surface area for adhesion and tensile bond strength--evaluation of amicrotensile bond test[J]. Dent Mater,1994,10(4):236-240. DOI:10.1016/0109-5641(94)90067-1.
[15]
Goracci C,Sadek FT,Monticelli F,et al. Influence of substrate,shape,and thickness on microtensile specimens′ structural integrity and their measured bond strengths[J]. Dent Mater,2004,20(7):643-654. DOI:10.1016/j.dental.2003.08.009.
[16]
Nakabayashi N,Kojima K,Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates[J]. J Biomed Mater Res,1982,16(3):265-273. DOI:10.1002/jbm.820160307.
[17]
Van Meerbeek B,Dhem A,Goret-Nicaise M,et al. Comparative SEM and TEM examination of the ultrastructure of the resin-dentin interdiffusion zone[J]. J Dent Res,1993,72(2):495-501. DOI:10.1177/00220345930720020501.
[18]
Eiek JD,Miller RG,Robinson SJ,et al. Quantitative analysis of the dentine adhesive interface by auger spectroscopy[J]. J Dent Res,1996,75(4):1027-1033. DOI:10.1177/00220345960750040501.
[19]
朱晓鸣,齐璇,李德利,等.不同温度新型大气压冷等离子体处理对牙本质粘接强度的影响[J].北大医学学报(医学版),2019,51(1):43-48. DOI:10.19723/j.issn.1671-167X.2019.01.008.
[20]
Okamoto Y,Heeley JD,Dogon IL,et al. Effects of phosphoric acid and tannic acid on dentine collagen[J]. J Oral Rehabil,1991,18(6):507-512. DOI:10.1111/j.1365-2842.1991.tb00073.x.
[21]
Federlin M,Hiller KA,Schmalz G. Effect of selective enamel etching on clinical performance of CAD/CAM partial ceramic crowns luted with a self-adhesive resin cement[J]. Clin Oral Investig,2014,18(8):1975-1984. DOI:10.1007/s00784-013-1173-2.
[22]
Bedran-Russo AK,Yoo KJ,Ema KC,et al. Mechanical properties of tannic-acid-treated dentin matrix[J]. J Dent Res,2009,88(9):807-811. DOI:10.1177/0022034509342556.
[23]
鄢晓媛,陈玥,李轲,等.交联剂在抑制基质金属蛋白酶与提高粘接耐久性领域的研究进展[J/CD].中华口腔医学研究杂志(电子版),2019,13(5):311-316. DOI:10.3877/cma.j.issn.1674-1366.2019.05.009.
[24]
魏裕,王君.牙本质半胱氨酸组织蛋白酶研究现状[J].口腔医学研究,2020,36(1):16-19. DOI:10.13701/j.cnki.kqyxyj.2020.01.005.
[25]
Breschi L,Maravic T,Cunha SR,et al. Dentin bonding systems:From dentin collagen structure to bond preservation and clinical applications[J]. Dent Mater,2018,34(1):78-96. DOI:10.1016/j.dental.2017.11.005.
[26]
Betancourt DE,Baldion PA,Castellanos JE. Resin-Dentin Bonding Interface:Mechanisms of Degradation and Strategies for Stabilization of the Hybrid Layer[J]. Int J Biomater,2019,2019:5268342. DOI:10.1155/2019/5268342.
[27]
Nishitani Y,Yoshiyama M,Wadgaonkar B,et al. Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives[J]. Eur J Oral Sci,2006,114(2):160-166. DOI:10.1111/j.1600-0722.2006.00342.x.
[28]
Mazzoni A,Pashley D,Nishitani Y,et al. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives[J]. Biomaterials,2006,27(25):4470-4476. DOI:10.1016/j.biomaterials.2006.01.040.
[29]
Tersariol IL,Geraldeli S,Minciotti CL,et al. Cysteine cathepsins in human dentin-pulp complex[J]. J Endod,2010,36(3):475-481. DOI:10.1016/j.joen.2009.12.034.
[30]
Tekçe N,Tuncer S,Demirci M,et al. Do matrix metalloproteinase inhibitors improve the bond durability of universal dental adhesives?[J]. Scanning,2016,38(6):535-544. DOI:10.1002/sca.21293.
[31]
Hass V,Luque-Martinez I,Muñoz MA,et al. The effect of proanthocyanidin-containing 10% phosphoric acid on bonding properties and MMP inhibition[J]. Dent Mater,2016,32(3):468-475. DOI:10.1016/j.dental.2015.12.007.
[1] 庞菲菲, 刘俊杰, 于子航, 吴小婕, 张昕宇, 战德松, 付佳乐. 不同表面处理方式对聚醚醚酮与复合树脂粘接性能的影响[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 74-81.
[2] 王万锋, 徐正一, 李家硕, 曾祥隽, 龚兆威, 战德松, 付佳乐. 不同酸蚀模式对新型窝沟封闭剂在牙釉质表面粘接耐久性的影响[J]. 中华口腔医学研究杂志(电子版), 2021, 15(05): 284-291.
[3] 关丽娜, 杨帆, 尹东锋, 杨自更, 魏敦宏, 雒可夫, 王瑞. 低氧环境下Notch信号通路对人牙髓干细胞成牙本质向分化的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 214-220.
[4] 王晓, 倪龙兴, 田宇. 微创牙髓病学理念及微创髓腔预备方式[J]. 中华口腔医学研究杂志(电子版), 2020, 14(03): 133-137.
[5] 鄢晓媛, 陈玥, 李轲, 郑适泽, 战德松, 付佳乐. 交联剂在抑制基质金属蛋白酶与提高粘接耐久性领域的研究进展[J]. 中华口腔医学研究杂志(电子版), 2019, 13(05): 311-316.
[6] 古丽莎, 吴倩. 化学交联在牙本质粘接修复中的应用及展望[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 129-135.
[7] 谢丹丹, 麦穗, 吴倩, 赵曼多, 谭易, 古丽莎. 氧化海藻酸钠预处理提高树脂牙本质粘接的耐久性[J]. 中华口腔医学研究杂志(电子版), 2018, 12(06): 329-334.
[8] 孟庆飞, 张甲第, 孟箭. 模拟牙冠延长术联合牙本质肩领设计对斜折残根抗折力的影响[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 26-30.
[9] 邹蕊, 滕蕊, 王译婕, 董少杰, 张辉, 李晓红, 牛林. 增龄性变化对牙本质微观结构与力学特性的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(06): 341-345.
[10] 孟润莎, 莫泽欢, 徐琼. 脂磷壁酸诱导人成牙本质样细胞炎症微环境的机制研究[J]. 中华口腔医学研究杂志(电子版), 2017, 11(05): 257-265.
[11] 孟润莎, 徐琼. 成牙本质细胞在牙髓免疫防御中的作用研究进展[J]. 中华口腔医学研究杂志(电子版), 2017, 11(04): 238-241.
[12] 夏昕, 阮毅, 陈绛媛, 李博亚, 孔祥波, 伍虹. 地塞米松调控牙本质基质蛋白1在成骨细胞中的表达[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 81-85.
[13] 黄艳玲, 郑健茂, 凌均棨. 大鼠骨髓间充质干细胞成牙本质向分化中Wnt信号通路磷酸化抗体芯片分析[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 65-72.
[14] 宗丽, 温玉洁. 预防性使用脱敏剂对牙漂白术后牙齿敏感的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 41-44.
[15] 张天漪, 李湘霞, 简裕涛, 张新平, 赵克. 牙本质与复合树脂压缩蠕变行为匹配性的实验研究[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 12-16.
阅读次数
全文


摘要