[1] |
Dobbenga S, Fratila-Apachitei LE, Zadpoor AA. Nanopattern-induced osteogenic differentiation of stem cells-A systematic review[J]. Acta Biomater,2016(46):3-14.
|
[2] |
Huo KF, Gao B, Fu JJ,et al. Fabrication,modification,and biomedical applications of anodized TiO2 nanotube arrays[J]. Rsc Advances,2014,4(33):17300-17324.
|
[3] |
Li LJ, Kim SN, Cho SA. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces:modified sandblasted with large grit and acid-etched(MSLA),laser-treated,and laser and acid-treated Ti surfaces[J]. J Adv Prosthodont,2016,8(3):235-240.
|
[4] |
Liu R, Lei T, Dusevich V,et al. Surface characteristics and cell adhesion:a comparative study of four commercial dental implants [J]. J Prosthodont,2013,22(8):641-651.
|
[5] |
Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces[J]. Int J Oral Maxillofac Implants,2000,15(3):331-344.
|
[6] |
Cohen DJ, Cheng A, Kahn A,et al. Novel Osteogenic Ti-6Al-4V Device For Restoration Of Dental Function In Patients With Large Bone Deficiencies:Design,Development And Implementation[J]. Sci Rep,2016(6):20493.
|
[7] |
Coelho PG, Jimbo R, Tovar N,et al. Osseointegration:hierarchical designing encompassing the macrometer,micrometer,and nanometer length scales[J]. Dent Mater,2015,31(1):37-52.
|
[8] |
Vandamme K, Naert I, Vander SJ,et al. Effect of implant surface roughness and loading on peri-implant bone formation[J]. J Periodontol,2008,79(1):150-157.
|
[9] |
Masaki C, Schneider GB, Zaharias R,et al. Effects of implant surface microtopography on osteoblast gene expression[J]. Clin Oral Implants Res,2005,16(6):650-656.
|
[10] |
Albrektsson T, Wennerberg A. Oral implant surfaces:Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J]. Int J Prosthodont,2004,17(5):536-543.
|
[11] |
Wu SD, Zhang H, Dong XD,et al. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations[J]. Appl Surf Sci,2015(329):347-355.
|
[12] |
Lee EM, Smith K, Gall K,et al. Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation[J]. Biomaterials,2016(110):34-44.
|
[13] |
Kim MJ, Kim CW, Lim YJ,et al. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells[J]. J Biomed Mater Res A,2006,79(4):1023-1032.
|
[14] |
Gittens RA, Scheideler L, Rupp F,et al. A review on the wettability of dental implant surfacesⅡ:Biological and clinical aspects[J]. Acta Biomater,2014,10(7):2907-2918.
|
[15] |
Yu P, Zhu X, Wang X,et al. Periodic Nanoneedle and Buffer Zones Constructed on a Titanium Surface Promote Osteogenic Differentiation and Bone Calcification In Vivo[J]. Adv Healthc Mater,2016,5(3):364-372.
|
[16] |
Gittens RA, Olivares-Navarrete R, Cheng A,et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta Biomater,2013,9(4):6268-6277.
|
[17] |
Cho S, Kim D, Cho WK,et al. Diverging Effects of Topographical Continuity on the Wettability of a Rough Surface[J]. ACS Appl Mater Interfaces,2016,8(43):29770-29778.
|
[18] |
Kilian KA, Bugarija B, Lahn BT,et al. Geometric cues for directing the differentiation of mesenchymal stem cells[J]. Proc Natl Acad Sci U S A,2010,107(11):4872-4877.
|