切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2017, Vol. 11 ›› Issue (01) : 25 -30. doi: 10.3877/cma.j.issn.1674-1366.2017.01.005

所属专题: 文献

基础研究

纯钛不同形貌表面对骨髓间充质干细胞体外生物学行为的影响
黄静燕1, 王安训2, 黄沁1, 吴嘉玲1, 陈杰1, 王焱1,()   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510080 广州,中山大学附属第一医院口腔颌面外科
  • 收稿日期:2016-12-27 出版日期:2017-02-01
  • 通信作者: 王焱
  • 基金资助:
    国家自然科学基金(81550013)

The influence of different titanium topographies on the biological functions of mesenchymal stem cells

Jingyan Huang1, Anxun Wang2, Qin Huang1, Jialing Wu1, Jie Chen1, Yan Wang1,()   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
  • Received:2016-12-27 Published:2017-02-01
  • Corresponding author: Yan Wang
  • About author:
    Corresponding author: Wang Yan, Email:
引用本文:

黄静燕, 王安训, 黄沁, 吴嘉玲, 陈杰, 王焱. 纯钛不同形貌表面对骨髓间充质干细胞体外生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2017, 11(01): 25-30.

Jingyan Huang, Anxun Wang, Qin Huang, Jialing Wu, Jie Chen, Yan Wang. The influence of different titanium topographies on the biological functions of mesenchymal stem cells[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2017, 11(01): 25-30.

目的

探讨纯钛不同形貌表面对骨髓间充质干细胞(MSC)黏附、增殖、分化的影响。

方法

制备抛光纯钛(MP)、纳米管(TNT)、喷砂酸蚀(SLA)表面,通过扫描电镜(SEM)观察试件表面形貌,激光扫描共聚焦显微镜测量表面粗糙度,表面接触角分析仪分析表面水接触角。通过免疫荧光染色观察不同钛表面MSC形态,细胞计数法检测细胞早期黏附数量,CCK-8法检测细胞增殖,碱性磷酸酶(ALP)检测试剂盒检测ALP活性。采用单因素方差分析进行统计分析,LSD-t检验进行两两比较。

结果

TNT组表面见排列有序、管径约为80 nm的纳米管,SLA组呈微米-亚微米二级孔洞结构。SLA组表面粗糙度(Sa= 1.39 μm、Sq= 1.75 μm)最高,TNT组(Sa= 1.15 μm、Sq= 1.48 μm)其次,MP组(Sa= 0.87 μm、Sq= 1.14 μm)最低,差异有统计学意义(FSa=28.54、FSq=24.70,P<0.01)。TNT组表面接触角(8.11°)最小,亲水性最佳,差异有统计学意义(F= 16.32,P<0.01)。细胞免疫荧光染色显示MP组MSC呈方形,TNT组MSC呈长梭形,SLA组MSC呈多角形。TNT和SLA组接种30 min后的细胞黏附量(132.45、176.90个/视野)高于MP组(64.80个/视野),差异有统计学意义(F=12.05,P<0.01),接种60 min后各组间差异无统计学意义。CCK-8结果显示,接种1、7 d后各组间差异无统计学意义;接种3、5 d后,MP组细胞增殖活性最高,TNT组其次,SLA组最低,差异有统计学意义(F3 d= 175.44,P3 d<0.01;F5 d=6.329,P5 d= 0.02)。细胞分化结果显示,7、14 d TNT组ALP活性(ALP7 d=156.34 U/gprot、ALP14 d= 153.48 U/gprot)均显著高于MP(ALP7 d= 68.21 U/gprot,ALP14 d= 102.73 U/gprot)和SLA(ALP7 d= 65.30 U/gprot、ALP14 d= 86.53 U/gprot)两组,差异有统计学意义(F7 d= 4.93,P7 d= 0.04;F14 d= 6.49,P14 d= 0.02)。

结论

与微米级SLA表面相比,纳米级TNT表面呈高度亲水性,并更利于MSC的黏附、增殖和骨向分化。

Objective

To study the influence of different titanium topographies on the adhesion, proliferation and differentiation of mesenchymal stem cells (MSCs) .

Methods

All the titanium discs were divided into three groups and accepted the following treatments: machined smooth Ti (MP) , sandblasted and acid etched Ti (SLA) , TiO2 nanotubes (TNT) . The topography of Ti discs was observed by a scanning electron microscope (SEM) . The surface roughness of samples was determined using a laser scanning confocal microscope. The contact angles were measured using a contact angle analyzer. The morphology of MSC on different titanium surfaces was evaluated by immunofluorescence staining. Cell early adhesion was evaluated by counting the number of cells on different titanium surfaces. The cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation activity. Alkaline phosphatase (ALP) activity was measured using an ALP kit. The level of significance was determined by One-Way ANOVA followed by LSD-t test for a multiple comparison procedure.

Results

Evenly distributed nanotubes were observed in TNT with a diameter of about 80 nm, while a hierarchical structure with pores and holes was found in SLA. The roughness of SLA (Sa= 1.39 μm, Sq= 1.75 μm) was the highest, followed by TNT (Sa= 1.15 μm, Sq= 1.48 μm) and MP (Sa= 0.87 μm, Sq= 1.14 μm) (FSa= 28.54, FSq= 24.70, P<0.01) . The contact angle of TNT (8.11°) was the lowest among the three groups (F= 16.32, P<0.01) , indicating the highest hydrophilicity. With the immunofluorescence staining, cells were observed as cuboidal on MP, polygon-like on SLA and spindle-like on TNT. At the first 30 min of culture, more cell attachment was found on TNT and SLA (132.45/field, 176.90/field) than that on MP (64.80/field) (F=12.05, P<0.01) , while there was no significant difference among groups at 60 min of culture. According to the result of CCK-8 assay, there was no significant difference in the proliferation of cells among groups on day 1 and 7; whereas on day 3 and 5, the proliferation level of cells on MP was the highest, followed by TNT and SLA (F3 d= 175.44, P3 d<0.01; F5 d= 6.329, P5 d= 0.02) . A significantly higher ALP activity was detected in TNT (ALP7 d= 156.34 U/gprot, ALP14 d= 153.48 U/gprot) , compared with MP (ALP7 d= 68.21 U/gprot, ALP14 d= 102.73 U/gprot) and SLA (ALP7 d= 65.30 U/gprot, ALP14 d= 86.53 U/gprot) (F7 d= 4.93, P7 d= 0.04; F14 d= 6.49, P14 d= 0.02) .

Conclusion

The surface of TNT presents to be highly hydrophilic and is more favorable for the adhesion, proliferation and differentiation of MSC compared with SLA.

图1 各组钛片经不同表面处理后在扫描电镜下的表面形貌
表1 不同钛表面粗糙度和表面接触角的比较(±s
图2 经不同处理的钛表面接种骨髓间充质干细胞24 h后的细胞骨架免疫荧光染色图
表2 不同钛表面骨髓间充质干细胞早期黏附数量的比较(±s
表3 不同钛表面骨髓间充质干细胞增殖水平的比较(±s
表4 骨髓间充质干细胞在不同钛表面各时间点ALP活性的比较(±s
[1]
Dobbenga S, Fratila-Apachitei LE, Zadpoor AA. Nanopattern-induced osteogenic differentiation of stem cells-A systematic review[J]. Acta Biomater,2016(46):3-14.
[2]
Huo KF, Gao B, Fu JJ,et al. Fabrication,modification,and biomedical applications of anodized TiO2 nanotube arrays[J]. Rsc Advances,2014,4(33):17300-17324.
[3]
Li LJ, Kim SN, Cho SA. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces:modified sandblasted with large grit and acid-etched(MSLA),laser-treated,and laser and acid-treated Ti surfaces[J]. J Adv Prosthodont,2016,8(3):235-240.
[4]
Liu R, Lei T, Dusevich V,et al. Surface characteristics and cell adhesion:a comparative study of four commercial dental implants [J]. J Prosthodont,2013,22(8):641-651.
[5]
Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces[J]. Int J Oral Maxillofac Implants,2000,15(3):331-344.
[6]
Cohen DJ, Cheng A, Kahn A,et al. Novel Osteogenic Ti-6Al-4V Device For Restoration Of Dental Function In Patients With Large Bone Deficiencies:Design,Development And Implementation[J]. Sci Rep,2016(6):20493.
[7]
Coelho PG, Jimbo R, Tovar N,et al. Osseointegration:hierarchical designing encompassing the macrometer,micrometer,and nanometer length scales[J]. Dent Mater,2015,31(1):37-52.
[8]
Vandamme K, Naert I, Vander SJ,et al. Effect of implant surface roughness and loading on peri-implant bone formation[J]. J Periodontol,2008,79(1):150-157.
[9]
Masaki C, Schneider GB, Zaharias R,et al. Effects of implant surface microtopography on osteoblast gene expression[J]. Clin Oral Implants Res,2005,16(6):650-656.
[10]
Albrektsson T, Wennerberg A. Oral implant surfaces:Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J]. Int J Prosthodont,2004,17(5):536-543.
[11]
Wu SD, Zhang H, Dong XD,et al. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations[J]. Appl Surf Sci,2015(329):347-355.
[12]
Lee EM, Smith K, Gall K,et al. Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation[J]. Biomaterials,2016(110):34-44.
[13]
Kim MJ, Kim CW, Lim YJ,et al. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells[J]. J Biomed Mater Res A,2006,79(4):1023-1032.
[14]
Gittens RA, Scheideler L, Rupp F,et al. A review on the wettability of dental implant surfacesⅡ:Biological and clinical aspects[J]. Acta Biomater,2014,10(7):2907-2918.
[15]
Yu P, Zhu X, Wang X,et al. Periodic Nanoneedle and Buffer Zones Constructed on a Titanium Surface Promote Osteogenic Differentiation and Bone Calcification In Vivo[J]. Adv Healthc Mater,2016,5(3):364-372.
[16]
Gittens RA, Olivares-Navarrete R, Cheng A,et al. The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells[J]. Acta Biomater,2013,9(4):6268-6277.
[17]
Cho S, Kim D, Cho WK,et al. Diverging Effects of Topographical Continuity on the Wettability of a Rough Surface[J]. ACS Appl Mater Interfaces,2016,8(43):29770-29778.
[18]
Kilian KA, Bugarija B, Lahn BT,et al. Geometric cues for directing the differentiation of mesenchymal stem cells[J]. Proc Natl Acad Sci U S A,2010,107(11):4872-4877.
[1] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[4] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[5] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[6] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[7] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[8] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[9] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[10] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[11] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[12] 冷昭富, 汪永新. 儿童去骨瓣减压术后颅骨成形术的研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 313-317.
[13] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[14] 任鹏涛, 郝英豪, 阮红训, 秦晓宁, 张苑, 李猛. Lnczc3h7a靶向CTHRC6对肠癌细胞的增殖和迁移的影响[J]. 中华临床医师杂志(电子版), 2023, 17(03): 320-325.
[15] 蔡泽宇, 兰慧敏, 于婷, 罗慧. 基于Ti3C2负载阿霉素联合光热治疗抑制乳腺癌细胞增殖的研究[J]. 中华介入放射学电子杂志, 2023, 11(02): 140-145.
阅读次数
全文


摘要