切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 200 -205. doi: 10.3877/cma.j.issn.1674-1366.2024.03.010

综述

口腔钛种植体成骨性能的研究进展
陈天1, 李歆2, 刘开政3, 邓永强4,()   
  1. 1. 深圳大学总医院口腔科,深圳 518055;杭州师范大学口腔医学院,杭州 311121
    2. 深圳大学总医院口腔科,深圳 518055;深圳大学口腔医学研究所,深圳 518055
    3. 中国科学院深圳先进技术研究院人体组织与器官退行性研究中心,深圳 518055
    4. 深圳大学总医院口腔科,深圳 518055;杭州师范大学口腔医学院,杭州 311121;深圳大学口腔医学研究所,深圳 518055
  • 收稿日期:2024-02-24 出版日期:2024-06-01
  • 通信作者: 邓永强

Research progress in bone osseointegration for implant dentistry

Tian Chen1, Xin Li2, Kaizheng Liu3, Yongqiang Deng4,()   

  1. 1. Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China; Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
    2. Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China; School of Stomatology, Hangzhou Normal University, Hangzhou 311121, China
    3. Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    4. Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China; School of Stomatology, Hangzhou Normal University, Hangzhou 311121, China; Institute of Stomatological Research, Shenzhen University, Shenzhen 518055, China
  • Received:2024-02-24 Published:2024-06-01
  • Corresponding author: Yongqiang Deng
  • Supported by:
    National Natural Science Foundation of China(81901058); Science Technology and Innovation Committee of Shenzhen Municipality(20220810163811002)
引用本文:

陈天, 李歆, 刘开政, 邓永强. 口腔钛种植体成骨性能的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 200-205.

Tian Chen, Xin Li, Kaizheng Liu, Yongqiang Deng. Research progress in bone osseointegration for implant dentistry[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2024, 18(03): 200-205.

钛种植体因具有良好的骨整合能力,在口腔种植手术中得到了广泛的发展和应用。然而,钛种植体的骨整合能力受到表面特性、宿主状态和手术操作等多种因素的影响,可能导致种植体周围炎、无菌性松动等术后并发症。这给口腔种植手术的可靠性和稳定性带来了挑战。为了解决这一问题,目前的主要策略是深入研究骨整合的生物学机制,并开发具有动态响应功能的表面改性方法。因此,本文总结了骨-钛种植体界面的交互作用方式和钛种植体表面改性方法的最新进展,为进一步推动口腔种植手术发展和维护患者身心健康做出展望。

Titanium implants have been widely developed and utilized in oral implant surgery due to their excellent osseointegration capabilities. However, the osseointegration ability of titanium implants is influenced by various factors such as surface properties, host status, and surgical procedures, which may lead to postoperative complications such as peri-implantitis and aseptic loosening. This poses challenges to the reliability and stability of oral implant surgery. To solve this problem, the current main strategy is to deeply investigate the biological mechanisms of osseointegration and develop surface modification methods with dynamic responsive functions. Therefore, this paper summarized the interaction modes between bone and titanium implant interfaces and the latest advances in surface modification methods for titanium implants, providing prospects for further promoting the development of oral implant surgery and maintaining the physical and mental health of patients.

图1 骨整合相关生物事件序列的示意图
[1]
Buser DSennerby Lde Bruyn H. Modern implant dentistry based on osseointegration:50 years of progress,current trends and open questions[J]. Periodontology 2000201773(1):7-21. DOI:10.1111/prd.12185.
[2]
Albrektsson TBrånemark PIHansson HA,et al. Osseointegrated titanium implants. Requirements for ensuring a long-lasting,direct bone-to-implant anchorage in man[J]. Acta Orthop Scand198152(2):155-170. DOI:10.3109/17453678108991776.
[3]
Shah FAThomsen PPalmquist A. Osseointegration and current interpretations of the bone-implant interface[J]. Acta Biomaterialia201984:1-15. DOI:10.1016/j.actbio.2018.11.018.
[4]
Guglielmotti MBOlmedo DGCabrini RL. Research on implants and osseointegration[J]. Periodontol 2000201979(1):178-189. DOI:10.1111/prd.12254.
[5]
Williams DF. Biocompatibility pathways:Biomaterials-Induced sterile inflammation,mechanotransduction,and principles of biocompatibility control[J]. ACS Biomater Sci Eng20173(1):2-35. DOI:10.1021/acsbiomaterials.6b00607.
[6]
Williams DF. On the mechanisms of biocompatibility[J]. Biomaterials200829(20):2941-2953. DOI:10.1016/j.biomaterials.2008.04.023.
[7]
Jiang PZhang YHu R,et al. Advanced surface engineering of titanium materials for biomedical applications:From static modification to dynamic responsive regulation[J]. Bioact Mater202327:15-57. DOI:10.1016/j.bioactmat.2023.03.006.
[8]
Li JJZreiqat H. Tissue response to biomaterials[M]//Narayan R. Encyclopedia of biomedical engineering. Elsevier Inc,2019:270-277. DOI:10.1016/B978-0-12-801238-3.99880-5.
[9]
Esposito MArdebili YWorthington HV. WITHDRAWN:Interventions for replacing missing teeth:Different types of dental implants[J]. Cochrane Database Syst Rev201910(10):CD003815. DOI:10.1002/14651858.CD003815.pub5.
[10]
Williams DF. Biocompatibility pathways and mechanisms for bioactive materials:The bioactivity zone[J]. Bioact Mater202210:306-322. DOI:10.1016/j.bioactmat.2021.08.014.
[11]
Reis RL. 2nd Consensus conference on definitions on biomaterials science[J]. J Tissue Eng Regen Med202014(4):561-562. DOI:10.1002/term.3016.
[12]
Boudin Evan Hul W. Mechanisms in endocrinology:Genetics of human bone formation[J]. Eur J Endocrinol2017177(2):R69-R83. DOI:10.1530/EJE-16-0990.
[13]
Schwarz FDerks JMonje A,et al. Peri-implantitis[J]. J Periodontol201889(Suppl 1):S267-S290. DOI:10.1002/jper.16-0350.
[14]
Insua AGalindo-Moreno PMiron RJ,et al. Emerging factors affecting peri-implant bone metabolism[J]. Periodontol 2000,2023. DOI:10.1111/prd.12532.
[15]
Alghamdi HSJansen JA. The development and future of dental implants[J]. Dent Mater J202039(2):167-172. DOI:10.4012/dmj.2019-140.
[16]
Chen XGiles JYao Y,et al. The path to healthy ageing in China:A Peking University-Lancet Commission[J]. Lancet2022400(10367):1967-2006. DOI:10.1016/s0140-6736(22)01546-x.
[17]
Darby I. Risk factors for periodontitis & peri-implantitis[J]. Periodontol 2000202290(1):9-12. DOI:10.1111/prd.12447.
[18]
Guo JYao HLi X,et al. Advanced Hydrogel systems for mandibular reconstruction[J]. Bioact Mater202321:175-193. DOI:10.1016/j.bioactmat.2022.08.001.
[19]
Leucht PKim JBAmasha R,et al. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration[J]. Development2008135(17):2845-2854. DOI:10.1242/dev.023788.
[20]
Achilleos ATrainor PA. Neural crest stem cells:Discovery,properties and potential for therapy[J]. Cell Res201222(2):288-304. DOI:10.1038/cr.2012.11.
[21]
Palmquist AOmar OMEsposito M,et al. Titanium oral implants:Surface characteristics,interface biology and clinical outcome[J]. J R Soc Interface20107(Suppl 5):S515-S527. DOI:10.1098/rsif.2010.0118.focus.
[22]
Colnot CRomero DMHuang S,et al. Molecular analysis of healing at a bone-implant interface[J]. J Dent Res200786(9):862-867. DOI:10.1177/154405910708600911.
[23]
Pandey CRokaya DBhattarai BP. Contemporary concepts in osseointegration of dental implants:A review[J]. Biomed Res Int2022:6170452. DOI:10.1155/2022/6170452.
[24]
Wu BTang YWang K,et al. Nanostructured titanium implant surface facilitating osseointegration from protein adsorption to osteogenesis:The example of TiO2 NTAs[J]. Int J Nanomedicine202217:1865-1879. DOI:10.2147/ijn.S362720.
[25]
Lin DJFuh LJChen WC. Nano-morphology,crystallinity and surface potential of anatase on micro-arc oxidized titanium affect its protein adsorption,cell proliferation and cell differentiation [J]. Mater Sci Eng C Mater Biol Appl2020107:110204. DOI:10.1016/j.msec.2019.110204.
[26]
Visalakshan RMMacGregor MNSasidharan S,et al. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses[J]. ACS Appl Mater Interfaces201911(31):27615-27623. DOI:10.1021/acsami.9b09900.
[27]
Bai LZhao YChen P,et al. Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J]. Small202117(4):e2006287. DOI:10.1002/smll.202006287.
[28]
Zhang LLiao XFok A,et al. Effect of crystalline phase changes in titania(TiO2)nanotube coatings on platelet adhesion and activation[J]. Mater Sci Eng C Mater Biol Appl201882:91-101. DOI:10.1016/j.msec.2017.08.024.
[29]
Chen ZKlein TMurray RZ,et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Materials Today201619(6):304-321. DOI:10.1016/j.mattod.2015.11.004.
[30]
Wang XLi YFeng Y,et al. The role of macrophages in osseointegration of dental implants:An experimental study in vivo[J]. J Biomed Mater Res A2020108(11):2206-2216. DOI:10.1002/jbm.a.36978.
[31]
Davies LCJenkins SJAllen JE,et al. Tissue-resident macrophages[J]. Nat Immunol201314(10):986-995. DOI:10.1038/ni.2705.
[32]
Williams DF. The plasticity of biocompatibility[J]. Biomaterials2023296:122077. DOI:10.1016/j.biomaterials.2023.122077.
[33]
杨帮成,周学东,于海洋,等.钛种植体表面改性方法[J].华西口腔医学杂志201937(2):124-129. DOI:10.7518/hxkq.2019.02.002.
[34]
Barth KAWaterfield JDBrunette DM. The effect of surface roughness on RAW 264.7 macrophage phenotype[J]. J Biomed Mater Res A2013101(9):2679-2688. DOI:10.1002/jbm.a.34562.
[35]
Qi HShi MNi Y,et al. Size-confined effects of nanostructures on fibronectin-induced macrophage inflammation on titanium implants[J]. Adv Healthc Mater202110(20):e2100994. DOI:10.1002/adhm.202100994.
[36]
He YLuo JZhang Y,et al. The unique regulation of implant surface nanostructure on macrophages M1 polarization[J]. Mater Sci Eng C Mater Biol Appl2020106:110221. DOI:10.1016/j.msec.2019.110221.
[37]
Hotchkiss KMClark NMOlivares-Navarrete R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials2018182:202-215. DOI:10.1016/j.biomaterials.2018.08.029.
[38]
车振家,朱正清,朱礼伟,等.钛植入物表面生物化学改性对骨整合的影响[J].中国组织工程研究202226(16):2576-2583.
[39]
Fernandes KRZhang YMagri AMP,et al. Biomaterial property effects on platelets and macrophages:An in vitro study [J]. ACS Biomater Sci Eng20173(12):3318-3327. DOI:10.1021/acsbiomaterials.7b00679.
[40]
Quan HKim YPark HC,et al. Effects of phosphatidylserine-containing supported lipid bilayers on the polarization of macrophages[J]. J Biomed Mater Res A2018106(10):2625-2633. DOI:10.1002/jbm.a.36454.
[41]
Qiao WWong KHMShen J,et al. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration[J]. Nat Commun202112(1):2885. DOI:10.1038/s41467-021-23005-2.
[42]
Sun ARSun QWang Y,et al. Surface modifications of titanium dental implants with strontium eucommia ulmoides to enhance osseointegration and suppress inflammation[J]. Biomater Res202327(1):21. DOI:10.1186/s40824-023-00361-2.
[43]
Shirazi SRavindran SCooper LF. Topography-mediated immunomodulation in osseointegration;Ally or Enemy[J]. Biomaterials2022291:121903. DOI:10.1016/j.biomaterials.2022.121903.
[44]
Bosshardt DDChappuis VBuser D. Osseointegration of titanium,titanium alloy and zirconia dental implants:current knowledge and open questions[J]. Periodontol 2000201773(1):22-40. DOI:10.1111/prd.12179.
[45]
Kim WJCho YDKu Y,et al. The worldwide patent landscape of dental implant technology[J]. Biomater Res202226(1):59. DOI:10.1186/s40824-022-00307-0.
[46]
Wang LHe HYang X,et al. Bimetallic ions regulated PEEK of bone implantation for antibacterial and osteogenic activities [J]. Materials Today Advances202112:100162. DOI:10.1016/j.mtadv.2021.100162.
[47]
Xiao RZhou GWen Y,et al. Recent advances on stimuli-responsive biopolymer-based nanocomposites for drug delivery [J]. Composites Part B:Engineering2023266:111018. DOI:10.1016/j.compositesb.2023.111018.
[48]
Guo QZhou CMa Z,et al. Fundamentals of TiO2 Photocatalysis:Concepts,Mechanisms,and Challenges[J]. Adv Mater201931(50):e1901997. DOI:10.1002/adma.201901997.
[49]
Fu JLiu XTan L,et al. Photoelectric-responsive extracellular matrix for bone engineering[J]. ACS Nano201913(11):13581-13594. DOI:10.1021/acsnano.9b08115.
[50]
Zhao JXu JJian X,et al. NIR light-driven photocatalysis on amphiphilic TiO2 nanotubes for controllable drug release[J]. ACS Appl Mater Interfaces202012(20):23606-23616. DOI:10.1021/acsami.0c04260.
[51]
Yu YLWu JJLin CC,et al. Elimination of methicillin-resistant Staphylococcus aureus biofilms on titanium implants via photothermally-triggered nitric oxide and immunotherapy for enhanced osseointegration[J]. Mil Med Res202310(1):21. DOI:10.1186/s40779-023-00454-y.
[52]
Uzair UBenza DBehrend CJ,et al. Noninvasively imaging pH at the surface of implanted orthopedic devices with X-ray excited luminescence chemical imaging[J]. ACS Sens20194(9):2367-2374. DOI:10.1021/acssensors.9b00962.
[53]
Mazare APark JSimons S,et al. Black TiO2 nanotubes:Efficient electrodes for triggering electric field-induced stimulation of stem cell growth[J]. Acta Biomater201997:681-688. DOI:10.1016/j.actbio.2019.08.021.
[54]
Wu CHe XZhu Y,et al. Electrochemical deposition of Ppy/Dex/ECM coatings and their regulation on cellular responses through electrical controlled drug release[J]. Colloids Surf B Biointerfaces2023222:113016. DOI:10.1016/j.colsurfb.2022.113016.
[55]
Liu WLi XJiao Y,et al. Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO3 nanoparticles on bone formation[J]. ACS Appl Mater Interfaces202012(46):51885-51903. DOI:10.1021/acsami.0c10957.
[56]
Wu HDong HTang Z,et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation[J]. Biomaterials2023293:121990. DOI:10.1016/j.biomaterials.2022.121990.
[57]
Seetharaman SEtienne-Manneville S. Cytoskeletal crosstalk in cell migration[J]. Trends Cell Biol202030(9):720-735. DOI:10.1016/j.tcb.2020.06.004.
[58]
Chen JLi JHu F,et al. Effect of microarc oxidation-treated Ti6Al4V scaffold following low-intensity pulsed ultrasound stimulation on osteogenic cells in vitro[J]. ACS Biomater Sci Eng20195(2):572-581. DOI:10.1021/acsbiomaterials.8b01000.
[59]
Lin SLi JShao J,et al. Anisotropic magneto-mechanical stimulation on collagen coatings to accelerate osteogenesis[J]. Colloids Surf B Biointerfaces2022210:112227. DOI:10.1016/j.colsurfb.2021.112227.
[60]
Lv XZhang JYang D,et al. Recent advances in pH-responsive nanomaterials for anti-infective therapy[J]. J Mater Chem B20208(47):10700-10711. DOI:10.1039/d0tb02177f.
[61]
Zhang LYang YXiong YH,et al. Infection-responsive long-term antibacterial bone plates for open fracture therapy[J]. Bioact Mater202325:1-12. DOI:10.1016/j.bioactmat.2023.01.002.
[62]
Zhou WBai TWang L,et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration[J]. Bioact Mater202320:64-80. DOI:10.1016/j.bioactmat.2022.05.015.
[63]
Yu YRan QShen X,et al. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials[J]. Colloids Surf B Biointerfaces2020185:110592. DOI:10.1016/j.colsurfb.2019.110592.
[64]
Zhang YHu KXing X,et al. Smart titanium coating composed of antibiotic conjugated peptides as an infection-responsive antibacterial agent[J]. Macromol Biosci202121(1):e2000194. DOI:10.1002/mabi.202000194.
[1] 柴浩卜, 王俏杰, 张先龙. 具有骨免疫调节性能的骨科生物材料研究进展[J]. 中华关节外科杂志(电子版), 2022, 16(01): 37-43.
[2] 黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.
[3] 许嘉允, 邓飞龙, 庄秀妹, 欧阳江林, 刘芸, 王婧, 李夏晨. 纯钛微纳米复合形貌对成骨细胞生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(06): 461-469.
阅读次数
全文


摘要