切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2015, Vol. 09 ›› Issue (06) : 461 -469. doi: 10.3877/cma.j.issn.1674-1366.2015.06.005

所属专题: 文献

基础研究

纯钛微纳米复合形貌对成骨细胞生物学行为的影响
许嘉允1, 邓飞龙1,(), 庄秀妹2, 欧阳江林3, 刘芸1, 王婧1, 李夏晨1   
  1. 1. 510055 广州,中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室
    2. 510120 广州,中山大学附属孙逸仙纪念医院口腔科
    3. 511458 广州中国科学院先进技术研究所
  • 收稿日期:2015-08-30 出版日期:2015-12-01
  • 通信作者: 邓飞龙
  • 基金资助:
    广东省自然科学基金(S2013010015805)

The influence of different hybrid micro/nano hierarchical titanium topographies on osteoblast biological functions

Jiayun Xu1, Feilong Deng1,(), Xiumei Zhuang2, Jianglin Ou-Yang3, Yun Liu1, Jing Wang1, Xiachen Li1   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
    2. Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510235, China
    3. Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou 511458, China
  • Received:2015-08-30 Published:2015-12-01
  • Corresponding author: Feilong Deng
  • About author:
    Corresponding author: Deng Feilong, Email: , Tel: 020-83862537
引用本文:

许嘉允, 邓飞龙, 庄秀妹, 欧阳江林, 刘芸, 王婧, 李夏晨. 纯钛微纳米复合形貌对成骨细胞生物学行为的影响[J]. 中华口腔医学研究杂志(电子版), 2015, 09(06): 461-469.

Jiayun Xu, Feilong Deng, Xiumei Zhuang, Jianglin Ou-Yang, Yun Liu, Jing Wang, Xiachen Li. The influence of different hybrid micro/nano hierarchical titanium topographies on osteoblast biological functions[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2015, 09(06): 461-469.

目的

对比研究纯钛表面不同微纳米图案对成骨细胞生物学活性的影响,探讨微米与纳米结构在影响细胞行为当中的不同作用。

方法

制备4组纯钛微纳米复合表面形貌:喷砂(S)、喷砂-酸蚀(SLA)、喷砂-碱热(SAH)及喷砂-阳极氧化(SAN)。检测各组材料表面理化性能,扫描电镜观察各组材料表面形貌及细胞黏附形态,CCK-8法测定细胞在材料表面增殖能力,碱性磷酸酶(ALP)活性检测细胞在材料表面分化能力。利用单因素方差分析进行统计分析,最小有意义差异(LSD)t检验对同时间点不同组的CCK-8及ALP结果进行比较。

结果

(1)粗糙度结果示:SLA组粗糙度大于其余3组,差异有统计学意义(FRa = 38.449,PRa<0.001;FRq = 29.564,PRq<0.001)。(2)扫描电镜示:S组仅形成弹坑状一级微米结构,黏附细胞伪足短小,SLA、SAH及SAN组分别修饰沟壑状、网状及管状二级纳米多孔图案,细胞于SAH、SAN组表面伪足更为伸展,其中SAH组表面细胞伪足生长进入孔隙形成机械锁结。(3)CCK-8结果示:第5天,SAH和SAN组细胞增殖A值(1.546和1.528)显著高于S组(1.31),差异有统计学意义(F = 3.229,P = 0.042);第7天时,SAH和SAN组细胞增殖A值(2.646和2.57)显著高于S组(2.24),差异有统计学意义(F = 3.51,P = 0.035)。(4)细胞分化检测示:接种7 d后,SAH组ALP活性(77.656)显著高于S、SLA及SAN组(53.132、51.052和62.207),差异有统计学意义(F = 29.734,P<0.001);接种14 d后,SAH与SAN组ALP活性(104.107和109.963)显著高于S与SLA两组(82.885和73.303),差异有统计学意义(F = 46.052,P<0.001)。

结论

钛片表面微纳米图案影响细胞伪足形态,促进细胞增殖及ALP活性,其中多孔形貌显著增加细胞活性,碱热处理表面早期ALP活性显著增加,且形成纳米网比纳米管更有利于形成机械锁结。

Objective

To compare different effects of cells on titanium surfaces with different micro/nano structures, and to evaluate different functions of micro- and nano-features, respectively.

Methods

All the titanium disc samples were divided into four groups and accepted the following treatments: (1) sandblasted only (S) ; (2) sandblasted followed by acid-etching (SLA) ; (3) sandblasted followed by alkali-heat (SAH) ; (4) sandblasted followed by anodizing (SAN) . The surface topography, elemental component and roughness of samples were examined. Surface biocompatibility and osteogenic capability were evaluated by cell counting kit (CCK-8) and alkaline phosphate activity (ALP) in vitro. The level of significance was determined by a one-way ANOVA followed by a least significant difference (LSD) t-test for a multiple comparison procedure.

Results

Surface of group S were showed only microtopography of pits, while the other three groups exhibited primary micro-structure modified by secondary nano-features of ditches (SLA) , nano-porous network layers (SAH) and nanotubes (SAN) , respectively. There was no significant difference of cell adhesion and proliferation in the 1st and 3rd day. Group SAH and SAN (1.546 and 1.528) enhanced cell proliferation significantly than Group S (1.31) in the 5th day (F = 3.229, P = 0.042) , in the 7th day, Group SAH and SAN (2.646 and 2.57) also significantly enhanced cell proliferation than Group S (2.24) (F = 3.51, P = 0.035) and induced affluent and stretched cell pseudopods. Moreover, pseudopods on the surface of group SAH grow into the network and wrap around the net to link to each other. In comparison, group SAH (77.656) significantly enhanced ALP activity in the 7th day than Group S, SLA and SAN (53.132, 51.052 and 62.207, respectively) (F = 29.734, P<0.001) , though the ALP activity of group SAN depressed in the early stage but enhanced significantly than Group S and SLA (82.885 and 73.303) in the 14th day (F = 46.052, P<0.001) .

Conclusions

Microstructures decided the roughness while nanostructures, especially nano-porous functioned in enhancing cell proliferation and differentiation. The forms of nano-porous induced cell pseudopods stretch, for which nano-porous network allowed cells to grow into and form extensive interlocking.

图1 4组钛片表面处理后的样品图
表1 EDS检测4组钛片表面元素的组成情况(%)
图2 4组钛片经不同表面处理后在低倍扫描电镜下的表面形态
图3 4组钛片经不同表面处理后在高倍扫描电镜下的微观表面形态
表2 4组钛片表面粗糙度的比较(μm, ± s
图4 低倍扫描电镜下4组钛片表面接种MC3T3-E1细胞后在各时间点的细胞黏附形态
图5 高倍扫描电镜下4组钛片表面接种MC3T3-E1细胞后4 h的细胞伪足形态
图6 MC3T3-E1细胞在4组钛片表面各时间点细胞增殖的比较
表3 MC3T3-E1细胞在4组钛片表面各时间点细胞增殖的比较(A值, ± s
图7 MC3T3-E1细胞在4组钛片表面各时间点细胞总蛋白浓度的比较
图8 MC3T3-E1细胞在4组钛片表面各时间点细胞碱性磷酸酶活性的比较
表4 MC3T3-E1细胞在4组钛片表面各时间点细胞总蛋白浓度的比较(μg/ml, ± s
表5 MC3T3-E1细胞在4组钛片表面各时间点碱性磷酸酶活性的比较(U/gprot, ± s
[1]
Zhao L,Liu L,Wu Z,et al. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation[J]. Biomaterials,2012,33(9):2629-2641.
[2]
Amin Yavari S,van der Stok J,Chai YC,et al. Bone regeneration performance of surface-treated porous titanium[J]. Biomaterials,2014,35(24):6172-6181.
[3]
Variola F,Vetrone F,Richert L,et al. Improving biocompatibility of implantable metals by nanoscale modification of surfaces:an overview of strategies,fabrication methods,and challenges[J]. Small,2009,5(9):996-1006.
[4]
Bressan E,Sbricoli L,Guazzo R,et al. Nanostructured surfaces of dental implants[J]. Int J Mol Sci,2013,14(1):1918-1931.
[5]
Meirelles L,Arvidsson A,Albrektsson T,et al. Increased bone formation to unstable nano rough titanium implants[J]. Clin Oral Implants Res,2007,18(3):326-332.
[6]
Khang D,Lu J,Yao C,et al. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium[J]. Biomaterials,2008,29(8):970-983.
[7]
Zhao L,Mei S,Chu PK,et al. The influence of hierarchical hybrid micro/nano-textured titanium surfaces with titania nanotubes on osteoblast functions[J]. Biomaterials,2010,31(19):5072-5082.
[8]
Zhang E,Zou C. Porous titanium and silicon-substituted hydroxyapatite biomodification prepared by a biomimetic process:characterization and in vivo evaluation[J]. Acta Biomater,2009,5(5):1732-1741.
[9]
Le Guéhennec L,Soueidan A,Layrolle P,et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dent Mater,2007,23(7):844-854.
[10]
Zhuang XM,Zhou B,Ouyang JL,et al. Enhanced MC3T3-E1 preosteoblasts response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces[J]. Biomed Mater,2014,9(4):045001.
[11]
Albrektsson T,Wennerberg A. Oral implant surfaces:Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them[J]. Int J Prosthodont,2004,17(5):536-543.
[12]
Tay CY,Irvine SA,Boey FY,et al. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications[J]. Small,2011,7(10):1361-1378.
[13]
McBeath R,Pirone DM,Nelson CM,et al. Cell shape,cytoskeletal tension,and RhoA regulate stem cell lineage commitment[J]. Dev Cell,2004,6(4):483-495.
[14]
Mullen L,Stamp RC,Brooks WK,et al. Selective laser melting:a regular unit cell approach for the manufacture of porous,titanium,bone in-growth constructs,suitable for orthopedic applications[J]. J Biomed Mater Res B Appl Biomater,2009,89(2):325-334.
[15]
Zhang Z,Jones D,Yue S,et al. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants[J]. Mater Sci and Eng C Mater Biol Appl,2013,33(7):4055-4062.
[16]
Mullen L,Stamp RC,Fox P,et al. Selective laser melting:a unit cell approach for the manufacture of porous,titanium,bone in-growth constructs,suitable for orthopedic applications. Ⅱ. Randomized structures[J]. J Biomed Mater Res B Appl Biomater,2010,92(1):178-188.
[1] 南润玲, 尚培中, 王金, 张克俭, 王铁山, 聂阿娜, 李艳艳, 张伟, 胡玮. 甲状腺乳头状癌术中纳米炭示踪对淋巴结清扫及甲状旁腺保护的临床意义[J]. 中华普通外科学文献(电子版), 2018, 12(01): 36-39.
[2] 闫娟, 石昊, 张雨, 张杰, 拓明祥, 田青, 许志平, 肖吓鹏. 复发性甲状腺癌二次手术术中不同甲状旁腺鉴定方案效果对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 180-183.
[3] 吴艳乐, 郑伟红, 李会, 张进军. 三种甲状旁腺识别和保护技术的效果对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(01): 87-90.
[4] 刘颂, 宋鹏, 艾世超, 杨志, 王萌, 陆晓峰, 管文贤. 双示踪导航腹腔镜胃癌根治术的单臂开放前瞻性研究[J]. 中华普外科手术学杂志(电子版), 2022, 16(06): 647-650.
[5] 陆晓峰, 刘颂, 艾世超, 夏雪峰, 沈晓菲, 宋鹏, 康星, 郑黎明, 王萌, 管文贤. 纳米碳与吲哚菁绿导航腹腔镜胃癌根治术淋巴结清扫的对比性研究[J]. 中华普外科手术学杂志(电子版), 2021, 15(02): 146-149.
[6] 龚勤俭, 张莹华, 杨再军, 马洁, 李志辉. 纳米碳示踪剂用于cN0T1/T2期甲状腺乳头状癌中央区淋巴结清扫的效果及影响因素[J]. 中华普外科手术学杂志(电子版), 2020, 14(05): 517-521.
[7] 尚兴国, 张雪棉, 岳秀杰, 杨东, 马英桥. 纳米炭淋巴示踪剂在cN0期甲状腺微小乳头状癌的应用效果研究[J]. 中华普外科手术学杂志(电子版), 2020, 14(04): 420-423.
[8] 龚勤俭, 张莹华, 杨再军, 马洁, 李志辉. 纳米碳示踪剂对老年甲状腺微小癌外科根治术的效果及预后的影响[J]. 中华普外科手术学杂志(电子版), 2020, 14(03): 310-313.
[9] 韩转宁, 郭宏斌, 杨宝林, 胡海燕. 超声造影引导下导丝定位联合纳米碳染色对乳腺癌SLN的定位效果分析[J]. 中华普外科手术学杂志(电子版), 2020, 14(01): 54-57.
[10] 张海艳, 陈娟. 纳米炭跟踪技术在甲状腺切除术中对癌旁组织的保护作用分析[J]. 中华普外科手术学杂志(电子版), 2019, 13(06): 634-636.
[11] 南润玲, 尚培中, 王金, 张克俭, 王铁山, 聂阿娜, 李艳艳, 张伟, 胡玮, 张河. 纳米炭负显影及甲状旁腺自体移植在甲状腺乳头状癌手术中的应用[J]. 中华普外科手术学杂志(电子版), 2019, 13(04): 406-408.
[12] 杜峻峰, 安然, 李世拥. 分化型甲状腺癌术中纳米碳示踪对颈淋巴结清扫的指导意义[J]. 中华普外科手术学杂志(电子版), 2018, 12(06): 462-465.
[13] 胡伟, 张桢, 沈丰, 周文波. 纳米碳示踪技术在胰腺癌根治术中的应用探讨[J]. 中华普外科手术学杂志(电子版), 2018, 12(05): 424-427.
[14] 孙荣能, 赵迎春, 曹晓丽. 纳米碳在甲状腺微小乳头状癌手术中对甲状旁腺及喉返神经的保护作用研究[J]. 中华普外科手术学杂志(电子版), 2018, 12(04): 302-305.
[15] 吴宏珊, 薛智钧, 索来, 申静. 碳纳米管/壳聚糖复合材料在医学领域应用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(07): 547-551.
阅读次数
全文


摘要