[1] |
Pillai S, Upadhyay A, Khayambashi P,et al. Dental 3D-printing:Transferring art from the laboratories to the clinics[J]. Polymers, 2021, 13(1):157. DOI: 10.3390/polym13010157.
|
[2] |
Liu M, Wang Y, Zhang S,et al. Success factors of additive manufactured root analogue implants[J]. ACS Biomater Sci Eng, 2022, 8(2):360-378. DOI: 10.1021/acsbiomaterials.1c01079.
|
[3] |
Lim H, Ryu M, Woo S,et al. Bone conduction capacity of highly porous 3D-printed titanium scaffolds based on different pore designs[J]. Materials, 2021, 14(14):3892. DOI: 10.3390/ma14143892.
|
[4] |
Revilla León M, Sadeghpour M, Özcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry[J]. J Prosthodont, 2020, 29(7):579-593. DOI: 10.1111/jopr.13212.
|
[5] |
Oliveira TT, Reis AC. Fabrication of dental implants by the additive manufacturing method:A systematic review[J]. J Prosthet Dent, 2019, 122(3):270-274. DOI: 10.1016/j.prosdent.2019.01.018.
|
[6] |
牛京喆,孙中刚,常辉,等. 3D打印医用钛合金研究进展[J].稀有金属材料与工程,2019,48(5):1697-1706.
|
[7] |
Harun WSW, Manam NS, Kamariah MSIN,et al. A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications[J]. Powder Technology, 2018, 331:74-97. DOI: 10.1016/j.powtec.2018.03.010.
|
[8] |
Lowther M, Louth S, Davey A,et al. Clinical,industrial,and research perspectives on powder bed fusion additively manufactured metal implants[J]. Additive Manufacturing,2019,28:565-584.
|
[9] |
Mierzejewska ŻA, Hudák R, Sidun J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications[J]. Materials(Basel), 2019, 12(1):176. DOI: 10.3390/ma12010176.
|
[10] |
汪豪杰,杨芳,郭志猛,等. 3D打印钛及钛合金的发展现状及挑战[J].稀有金属材料与工程,2021,50(2):709-716.
|
[11] |
Hamza HM, Deen KM, Haider W. Microstructural examination and corrosion behavior of selective laser melted and conventionally manufactured Ti6Al4V for dental applications[J]. Mater Sci Eng C Biol Appl, 2020, 113:110980. DOI: 10.1016/j.msec.2020.110980.
|
[12] |
Xiong Y, Wang W, Gao R,et al. Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application[J]. Materials Design, 2020, 195:108994. DOI: 10.1016/j.matdes.2020.108994.
|
[13] |
Yan X, Yin S, Chen C,et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J]. J Alloy Compd, 2018, 764:1056-1071. DOI: 10.1016/j.jallcom.2018.06.076.
|
[14] |
Dharmendra C, Hadadzadeh A, Amirkhiz BS,et al. Deformation mechanisms and fracture of electron beam melted Ti-6Al-4V[J]. Materials Science and Engineering:A, 2020, 771:138652. DOI: 10.1016/j.msea.2019.138652.
|
[15] |
Ter Haar GM, Becker TH. Selective laser melting produced Ti-6Al-4V:Post-process heat treatments to achieve superior tensile properties[J]. Materials(Basel), 2018, 11(1):146. DOI: 10.3390/ma11010146
|
[16] |
Xu W, Brandt M, Sun S,et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia, 2015, 85:74-84. DOI: 10.1016/j.actamat.2014.11.028.
|
[17] |
|
[18] |
Kim J, Kim M, Knowles JC,et al. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications[J]. Dental Materials, 2020, 36(7):945-958. DOI: 10.1016/j.dental.2020.04.027.
|
[19] |
Wysocki B, Maj P, Sitek R,et al. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants[J]. Applied Sciences, 2017, 7(7):657. DOI: 10.3390/app7070657.
|
[20] |
Vrancken B, Thijs L, Kruth J,et al. Heat treatment of Ti6Al4V produced by Selective Laser Melting:Microstructure and mechanical properties[J]. J Alloy Compd, 2012, 541:177-185. DOI: 10.1016/j.jallcom.2012.07.022.
|
[21] |
Liang Z, Sun Z, Zhang W,et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy[J]. J Alloy Compd, 2019, 782:1041-1048. DOI: 10.1016/j.jallcom.2018.12.051.
|
[22] |
Wang D, Dou W, Yang Y. Research on selective laser melting of Ti6Al4V:Surface morphologies,optimized processing zone,and ductility improvement mechanism[J]. Metals, 2018, 8(7):471. DOI: 10.3390/met8070471.
|
[23] |
Chern AH, Nandwana P, Yuan T,et al. A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing[J]. Int J Fatigue, 2019, 119:173-184. DOI: 10.1016/j.ijfatigue.2018.09.022.
|
[24] |
Greitemeier D, Palm F, Syassen F,et al. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting[J]. Int J Fatigue, 2017, 94:211-217. DOI: 10.1016/j.ijfatigue.2016.05.001.
|
[25] |
Chowdhury S, Yadaiah N, Prakash C,et al. Laser powder bed fusion:A state-of-the-art review of the technology,materials,properties & defects,and numerical modelling[J]. J Mater Res Technol, 2022, 20:2109-2172.DOI: 10.1016/j.jmrt.2022.07.121.
|
[26] |
Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. J Mater Process Tech, 2015, 220:202-214. DOI: 10.1016/j.jmatprotec.2015.01.025.
|
[27] |
Ren D, Li S, Wang H,et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. J Mater Sci Technol, 2019, 35(2):285-294. DOI: 10.1016/j.jmst.2018.09.066.
|
[28] |
Wally ZJ, Haque AM, Feteira A,et al. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications[J]. J Mech Behav Biomed Mater, 2019, 90:20-29. DOI: 10.1016/j.jmbbm.2018.08.047.
|
[29] |
Kelly CN, Evans NT, Irvin CW,et al. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting[J]. Materials Science and Engineering:C, 2019, 98:726-736. DOI: 10.1016/j.msec.2019.01.024.
|
[30] |
Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration[J]. Periodontology 2000, 2019,79(1):178-189. DOI: 10.1111/prd.12254.
|
[31] |
Li J, Hu J, Zhu Y,et al. Surface roughness control of root analogue dental implants fabricated using selective laser melting[J]. Additive Manufacturing, 2020, 34:101283. DOI: 10.1016/j.addma.2020.101283.
|
[32] |
Shaoki A, Xu JY, Sun H,et al. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting[J]. Biofabrication, 2016, 8(4):45014. DOI: 10.1088/1758-5090/8/4/045014.
|
[33] |
Chang Tu C, Tsai P, Chen SY,et al. 3D laser-printed porous Ti6Al4V dental implants for compromised bone support[J]. J Formos Med Assoc, 2020, 119(1):420-429. DOI: 10.1016/j.jfma.2019.07.023.
|
[34] |
Duan Y, Liu X, Zhang S,et al. Selective laser melted titanium implants play a positive role in early osseointegration in type 2 diabetes mellitus rats[J]. Dent Mater J, 2020, 39(2):214-221. DOI: 10.4012/dmj.2018-419.
|
[35] |
Mangano F, Mangano C, Piattelli A,et al. Histological evidence of the osseointegration of fractured direct metal laser sintering implants retrieved after 5 years of function[J]. Biomed Res Int, 2017:1-7. DOI: 10.1155/2017/9732136.
|
[36] |
Hindy A, Farahmand F, Pourdanesh F,et al. Synthesis and characterization of 3D-printed functionally graded porous titanium alloy[J]. J Mater Sci,2020,55(21):9082-9094.
|
[37] |
Yu T, Gao H, Liu T,et al. Effects of immediately static loading on osteointegration and osteogenesis around 3D-printed porous implant:A histological and biomechanical study[J]. Mater Sci Eng C Mater Biol Appl, 2020, 108:110406. DOI: 10.1016/j.msec.2019.110406.
|
[38] |
Liu J, Han G, Pan S,et al. Biomineralization stimulated peri-titanium implants prepared by selective laser melting[J]. J Materiomics, 2015, 1(3):253-261. DOI: 10.1016/j.jmat.2015.07.008.
|
[39] |
Wang H, Su K, Su L,et al. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis:A biomechanical evaluation[J]. J Mech Behav Biomed Mater, 2018, 88:488-496. DOI: 10.1016/j.jmbbm.2018.08.049.
|
[40] |
Huang CC, Li M, Tsai P,et al. Novel design of additive manufactured hollow porous implants[J]. Dent Mater, 2020, 36(11):1437-1451. DOI: 10.1016/j.dental.2020.08.011.
|
[41] |
Maher S, Wijenayaka AR, Lima-Marques L,et al. Advancing of additive-manufactured titanium implants with bioinspired micro-to nanotopographies[J]. ACS Biomater Sci Eng, 2021, 7(2):441-450. DOI: 10.1021/acsbiomaterials.0c01210.
|
[42] |
Zhang J, Liu J, Wang C,et al. A comparative study of the osteogenic performance between the hierarchical micro/submicro-textured 3D-printed Ti6Al4V surface and the SLA surface[J]. Bioact Mater, 2020, 5(1):9-16. DOI: 10.1016/j.bioactmat.2019.12.008.
|
[43] |
Liang C, Hu Y, Liu N,et al. Laser polishing of Ti6Al4V fabricated by selective laser melting[J]. Metals, 2020, 10(2):191. DOI: 10.3390/met10020191.
|
[44] |
da Costa Valente ML, de Oliveira TT, Kreve S,et al. Analysis of the mechanical and physicochemical properties of Ti-6Al-4V discs obtained by selective laser melting and subtractive manufacturing method[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(3):420-427. DOI: 10.1002/jbm.b.34710.
|
[45] |
Sheng X, Wang A, Wang Z,et al. Advanced surface modification for 3D-Printed titanium alloy implant interface functionalization[J]. Front Bioeng Biotechnol, 2022, 10:850110. DOI: 10.3389/fbioe.2022.850110.
|
[46] |
Shu T, Zhang Y, Sun G,et al. Enhanced Osseointegration by the hierarchical micro-nano topography on selective laser melting Ti-6Al-4V dental implants[J]. Front Bioeng Biotechnol, 2021, 8:621601. DOI: 10.3389/fbioe.2020.621601.
|
[47] |
Le PTM, Shintani SA, Takadama H,et al. Bioactivation treatment with mixed acid and heat on titanium implants fabricated by selective laser melting enhances preosteoblast cell differentiation[J]. Nanomaterials(Basel), 2021, 11(4):987. DOI: 10.3390/nano11040987.
|
[48] |
Xu R, Hu X, Yu X,et al. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells[J]. Int J Nanomedicine, 2018, 13:5045-5057. DOI: 10.2147/IJN.S166661.
|
[49] |
Dantas T, Madeira S, Gasik M,et al. Customized root-analogue implants:A review on outcomes from clinical trials and case reports[J]. Materials(Basel), 2021, 14(9):2296. DOI: 10.3390/ma14092296.
|
[50] |
|
[51] |
|
[52] |
Mangano F, Pozzi-Taubert S, Zecca PA,et al. Immediate restoration of fixed partial prostheses supported by one-piece narrow-diameter selective laser sintering implants:A 2-year prospective study in the posterior jaws of 16 patients[J]. Implant Dent, 2013, 22(4):388-393. DOI: 10.1097/ID.0b013e31829afa9d.
|
[53] |
Mangano FG, Caprioglio A, Levrini L,et al. Immediate loading of mandibular overdentures supported by one-piece,direct metal laser sintering mini-implants:A short-term prospective clinical study[J]. J Periodontol, 2015, 86(2):192-200. DOI: 10.1902/jop.2014.140343.
|
[54] |
Tunchel S, Blay A, Kolerman R,et al. 3D printing/additive manufacturing single titanium dental implants:A prospective multicenter study with 3 years of follow-up[J]. Int J Dent, 2016:8590971. DOI: 10.1155/2016/8590971.
|
[55] |
Mangano F, Luongo F, Shibli JA,et al. Maxillary overdentures supported by four splinted direct metal laser sintering implants:A 3-year prospective clinical study[J]. Int J Dent, 2014:252343. DOI: 10.1155/2014/252343
|
[56] |
Selvaraj SK, Prasad SK, Yasin SY,et al. Additive manufacturing of dental material parts via laser melting deposition:A review,technical issues,and future research directions[J]. J Manuf Process, 2022, 76:67-78. DOI: 10.1016/j.jmapro.2022.02.012.
|
[57] |
Aufa AN, Hassan MZ, Ismail Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants:Prospect development[J]. J Alloy Compd, 2022, 896:163072. DOI: 10.1016/j.jallcom.2021.163072.
|
[58] |
中国医疗器械行业协会3D打印医疗器械专业委员会. T/CAMDI 044-2020增材制造(3D打印)口腔金属种植体[S]. 2020.
|
[59] |
中国医疗器械行业协会3D打印医疗器械专业委员会. T/CAMDI 043-2020增材制造(3D打印)个性化种植体[S]. 2020.
|