切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01) : 1 -9. doi: 10.3877/cma.j.issn.1674-1366.2023.01.001

所属专题: 总编推荐

专家论坛

三维打印钛种植体性能及临床应用的研究进展
黄石头1, 魏洪波1, 李德华1,()   
  1. 1. 军事口腔医学国家重点实验室,口腔疾病国家临床医学研究中心,陕西省口腔生物工程技术研究中心,第四军医大学口腔医院种植科,西安 710032
  • 收稿日期:2022-10-22 出版日期:2023-02-01
  • 通信作者: 李德华

Research progress on mechanical and osseointegration properties of three-dimensional printed titanium implants

Shitou Huang1, Hongbo Wei1, Dehua Li1,()   

  1. 1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Implantology, School of Stomatology, the Fourth Military Medical University, Xi′an 710032, China
  • Received:2022-10-22 Published:2023-02-01
  • Corresponding author: Dehua Li
  • Supported by:
    National Key R & D Program of China(2017YFB1104100)
引用本文:

黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.

Shitou Huang, Hongbo Wei, Dehua Li. Research progress on mechanical and osseointegration properties of three-dimensional printed titanium implants[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2023, 17(01): 1-9.

种植牙是目前临床应用较为广泛的缺牙修复方式。种植体是种植治疗过程中的关键材料之一,以机械减材加工为主要生产方式。近年来,金属三维打印技术的出现和发展为口腔种植体的制造提供了另一种方法,三维打印钛种植体逐渐成为口腔种植领域的一个研究方向。本文阐述了可用于制备钛合金种植体的三维打印技术及其优缺点,并着重论述三维打印钛合金种植体力学、骨结合性能及临床应用的研究进展。

Implant is one of the key materials in the implant treatment process. Subtractive manufacturing is the main mode of production for implants. In recent years, the emergence and development of metal three-dimensional (3D) printing technology have provided an alternative method for the manufacturing of dental implants. Powder bed melting is one of the metal 3D printing technologies and most widely used in the biomedical field. Among them, selective laser melting (SLM) is the mainstream process of powder bed melting, which has strong comprehensive properties and broad application prospects. It has been found that 3D printing titanium implants have better mechanical properties than castings and are close to forgings, but there is a problem with mechanical properties anisotropy that needs to be optimized to meet the requirements of dental implant materials. In terms of biological characteristics, it has been proved that 3D printing technology does not affect the biocompatibility of titanium materials. Researchers demonstrated that 3D printed titanium implants have similar or even better osseointegration properties than the conventional titanium implants in three aspects: healthy animals, disease animal models and human experiments. Finally, the problems existing in 3D printed titanium implants are summarized and further research is envisioned.

表1 加工钛合金种植体的三维打印技术[1,6,10]
表2 不同工艺所制备钛合金的拉伸性能[9,13,14]
表3 构建三维打印钛种植体表面微纳复合形貌的方法
作者 年份 构建方法 主要结果
Maher等[41] 2021 对选择性激光熔化(SLM)钛种植体进行阳极氧化后,将试样浸入50 mL NaOH(1 mol/L)中,然后置于160 ℃的烤炉中,时间0.5~6 h。随后,冷却至室温,并用超纯水冲洗3次。再将样品在0.6 mol/L盐酸溶液中浸泡1 h,然后在300 ℃的管式炉中常压下焙烧3 h。 电子显微镜下观察种植体具有独特的双重微纳形貌,由微米级球形特征和垂直排列的纳米级柱状结构组成。种植体表面转变为超亲水表面,已测不出接触角。与对照组相比,处理后的种植体增加了模拟体液(SBF)中的羟基磷灰石类矿物沉积,此外,人成骨样细胞(NHBC)在纳米/微结构上表现出很强的黏附性,并表现出更大的矿化倾向。
Shu等[46] 2021 在室温下,用φ=30%双氧水和φ=30%盐酸(体积比1∶2.5)对SLM种植体进行纳米化处理36 h,然后用蒸馏水彻底冲洗。 纳米化处理的SLM种植体的接触角小于5°,显示出较高的亲水性能。细胞实验显示,在5 d时纳米修饰种植体有丝分裂相关基因(PINK1ParkinLC3BLAMP1)表达增强,14 d时成骨相关基因(Runx2Ocn)表达增强。在骨形成的早期阶段,纳米修饰的SLM种植体表现出比对照组更高的骨与种植体接触。
Le等[47] 2021 SLM种植体在70 ℃的φ=66.3%硫酸和φ=10.3%盐酸的混合物中浸泡1 h,然后在600 ℃的电炉中加热1 h,自然冷却。 酸热混合处理提高了SLM种植体的亲水性,接触角仅为1°。在模拟体液中浸泡样品时,只有酸热混合处理SLM钛种植体在其表面完全形成球状沉淀,而其他样品没有任何沉积。RT-PCR定量检测成骨相关基因的结果表明,酸热混合处理表面的MC3T3-E1细胞通过ALPOCNRunx2OPN的表达显著增加,在基因水平上表现出更强的成骨分化倾向。
Xu等[48] 2018 对SLM种植体进行阳极氧化处理,形成了二氧化钛纳米管阵列,然后通过电化学沉积将磷酸钙纳米颗粒嵌入到纳米管或纳米管之间。 牙龈上皮细胞和牙龈成纤维细胞在阳极氧化和电化学沉积组的黏附、增殖及黏附相关基因表达显著高于对照组(仅阳极氧化组和未处理组)差异有统计学意义。
[1]
Pillai S, Upadhyay A, Khayambashi P,et al. Dental 3D-printing:Transferring art from the laboratories to the clinics[J]. Polymers202113(1):157. DOI:10.3390/polym13010157.
[2]
Liu M, Wang Y, Zhang S,et al. Success factors of additive manufactured root analogue implants[J]. ACS Biomater Sci Eng20228(2):360-378. DOI:10.1021/acsbiomaterials.1c01079.
[3]
Lim H, Ryu M, Woo S,et al. Bone conduction capacity of highly porous 3D-printed titanium scaffolds based on different pore designs[J]. Materials202114(14):3892. DOI:10.3390/ma14143892.
[4]
Revilla León M, Sadeghpour M, Özcan M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry[J]. J Prosthodont202029(7):579-593. DOI:10.1111/jopr.13212.
[5]
Oliveira TT, Reis AC. Fabrication of dental implants by the additive manufacturing method:A systematic review[J]. J Prosthet Dent2019122(3):270-274. DOI:10.1016/j.prosdent.2019.01.018.
[6]
牛京喆,孙中刚,常辉,等. 3D打印医用钛合金研究进展[J].稀有金属材料与工程201948(5):1697-1706.
[7]
Harun WSW, Manam NS, Kamariah MSIN,et al. A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications[J]. Powder Technology2018331:74-97. DOI:10.1016/j.powtec.2018.03.010.
[8]
Lowther M, Louth S, Davey A,et al. Clinical,industrial,and research perspectives on powder bed fusion additively manufactured metal implants[J]. Additive Manufacturing201928:565-584.
[9]
Mierzejewska ŻA, Hudák R, Sidun J. Mechanical properties and microstructure of DMLS Ti6Al4V alloy dedicated to biomedical applications[J]. Materials(Basel)201912(1):176. DOI:10.3390/ma12010176.
[10]
汪豪杰,杨芳,郭志猛,等. 3D打印钛及钛合金的发展现状及挑战[J].稀有金属材料与工程202150(2):709-716.
[11]
Hamza HM, Deen KM, Haider W. Microstructural examination and corrosion behavior of selective laser melted and conventionally manufactured Ti6Al4V for dental applications[J]. Mater Sci Eng C Biol Appl2020113:110980. DOI:10.1016/j.msec.2020.110980.
[12]
Xiong Y, Wang W, Gao R,et al. Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application[J]. Materials Design2020195:108994. DOI:10.1016/j.matdes.2020.108994.
[13]
Yan X, Yin S, Chen C,et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting[J]. J Alloy Compd2018764:1056-1071. DOI:10.1016/j.jallcom.2018.06.076.
[14]
Dharmendra C, Hadadzadeh A, Amirkhiz BS,et al. Deformation mechanisms and fracture of electron beam melted Ti-6Al-4V[J]. Materials Science and Engineering:A2020771:138652. DOI:10.1016/j.msea.2019.138652.
[15]
Ter Haar GM, Becker TH. Selective laser melting produced Ti-6Al-4V:Post-process heat treatments to achieve superior tensile properties[J]. Materials(Basel)201811(1):146. DOI:10.3390/ma11010146
[16]
Xu W, Brandt M, Sun S,et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition[J]. Acta Materialia201585:74-84. DOI:10.1016/j.actamat.2014.11.028.
[17]
Liu S, Shin YC. Additive manufacturing of Ti6Al4V alloy:A review[J]. Materials Design2019164:107552. DOI:10.1016/j.matdes.2018.107552.
[18]
Kim J, Kim M, Knowles JC,et al. Mechanophysical and biological properties of a 3D-printed titanium alloy for dental applications[J]. Dental Materials202036(7):945-958. DOI:10.1016/j.dental.2020.04.027.
[19]
Wysocki B, Maj P, Sitek R,et al. Laser and electron beam additive manufacturing methods of fabricating titanium bone implants[J]. Applied Sciences20177(7):657. DOI:10.3390/app7070657.
[20]
Vrancken B, Thijs L, Kruth J,et al. Heat treatment of Ti6Al4V produced by Selective Laser Melting:Microstructure and mechanical properties[J]. J Alloy Compd2012541:177-185. DOI:10.1016/j.jallcom.2012.07.022.
[21]
Liang Z, Sun Z, Zhang W,et al. The effect of heat treatment on microstructure evolution and tensile properties of selective laser melted Ti6Al4V alloy[J]. J Alloy Compd2019782:1041-1048. DOI:10.1016/j.jallcom.2018.12.051.
[22]
Wang D, Dou W, Yang Y. Research on selective laser melting of Ti6Al4V:Surface morphologies,optimized processing zone,and ductility improvement mechanism[J]. Metals20188(7):471. DOI:10.3390/met8070471.
[23]
Chern AH, Nandwana P, Yuan T,et al. A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing[J]. Int J Fatigue2019119:173-184. DOI:10.1016/j.ijfatigue.2018.09.022.
[24]
Greitemeier D, Palm F, Syassen F,et al. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting[J]. Int J Fatigue201794:211-217. DOI:10.1016/j.ijfatigue.2016.05.001.
[25]
Chowdhury S, Yadaiah N, Prakash C,et al. Laser powder bed fusion:A state-of-the-art review of the technology,materials,properties & defects,and numerical modelling[J]. J Mater Res Technol202220:2109-2172.DOI:10.1016/j.jmrt.2022.07.121.
[26]
Kasperovich G, Hausmann J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting[J]. J Mater Process Tech2015220:202-214. DOI:10.1016/j.jmatprotec.2015.01.025.
[27]
Ren D, Li S, Wang H,et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique[J]. J Mater Sci Technol201935(2):285-294. DOI:10.1016/j.jmst.2018.09.066.
[28]
Wally ZJ, Haque AM, Feteira A,et al. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications[J]. J Mech Behav Biomed Mater201990:20-29. DOI:10.1016/j.jmbbm.2018.08.047.
[29]
Kelly CN, Evans NT, Irvin CW,et al. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting[J]. Materials Science and Engineering:C201998:726-736. DOI:10.1016/j.msec.2019.01.024.
[30]
Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration[J]. Periodontology 20002019,79(1):178-189. DOI:10.1111/prd.12254.
[31]
Li J, Hu J, Zhu Y,et al. Surface roughness control of root analogue dental implants fabricated using selective laser melting[J]. Additive Manufacturing202034:101283. DOI:10.1016/j.addma.2020.101283.
[32]
Shaoki A, Xu JY, Sun H,et al. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting[J]. Biofabrication20168(4):45014. DOI:10.1088/1758-5090/8/4/045014.
[33]
Chang Tu C, Tsai P, Chen SY,et al. 3D laser-printed porous Ti6Al4V dental implants for compromised bone support[J]. J Formos Med Assoc2020119(1):420-429. DOI:10.1016/j.jfma.2019.07.023.
[34]
Duan Y, Liu X, Zhang S,et al. Selective laser melted titanium implants play a positive role in early osseointegration in type 2 diabetes mellitus rats[J]. Dent Mater J202039(2):214-221. DOI:10.4012/dmj.2018-419.
[35]
Mangano F, Mangano C, Piattelli A,et al. Histological evidence of the osseointegration of fractured direct metal laser sintering implants retrieved after 5 years of function[J]. Biomed Res Int2017:1-7. DOI:10.1155/2017/9732136.
[36]
Hindy A, Farahmand F, Pourdanesh F,et al. Synthesis and characterization of 3D-printed functionally graded porous titanium alloy[J]. J Mater Sci202055(21):9082-9094.
[37]
Yu T, Gao H, Liu T,et al. Effects of immediately static loading on osteointegration and osteogenesis around 3D-printed porous implant:A histological and biomechanical study[J]. Mater Sci Eng C Mater Biol Appl2020108:110406. DOI:10.1016/j.msec.2019.110406.
[38]
Liu J, Han G, Pan S,et al. Biomineralization stimulated peri-titanium implants prepared by selective laser melting[J]. J Materiomics20151(3):253-261. DOI:10.1016/j.jmat.2015.07.008.
[39]
Wang H, Su K, Su L,et al. The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis:A biomechanical evaluation[J]. J Mech Behav Biomed Mater201888:488-496. DOI:10.1016/j.jmbbm.2018.08.049.
[40]
Huang CC, Li M, Tsai P,et al. Novel design of additive manufactured hollow porous implants[J]. Dent Mater202036(11):1437-1451. DOI:10.1016/j.dental.2020.08.011.
[41]
Maher S, Wijenayaka AR, Lima-Marques L,et al. Advancing of additive-manufactured titanium implants with bioinspired micro-to nanotopographies[J]. ACS Biomater Sci Eng20217(2):441-450. DOI:10.1021/acsbiomaterials.0c01210.
[42]
Zhang J, Liu J, Wang C,et al. A comparative study of the osteogenic performance between the hierarchical micro/submicro-textured 3D-printed Ti6Al4V surface and the SLA surface[J]. Bioact Mater20205(1):9-16. DOI:10.1016/j.bioactmat.2019.12.008.
[43]
Liang C, Hu Y, Liu N,et al. Laser polishing of Ti6Al4V fabricated by selective laser melting[J]. Metals202010(2):191. DOI:10.3390/met10020191.
[44]
da Costa Valente ML, de Oliveira TT, Kreve S,et al. Analysis of the mechanical and physicochemical properties of Ti-6Al-4V discs obtained by selective laser melting and subtractive manufacturing method[J]. J Biomed Mater Res B Appl Biomater2021109(3):420-427. DOI:10.1002/jbm.b.34710.
[45]
Sheng X, Wang A, Wang Z,et al. Advanced surface modification for 3D-Printed titanium alloy implant interface functionalization[J]. Front Bioeng Biotechnol202210:850110. DOI:10.3389/fbioe.2022.850110.
[46]
Shu T, Zhang Y, Sun G,et al. Enhanced Osseointegration by the hierarchical micro-nano topography on selective laser melting Ti-6Al-4V dental implants[J]. Front Bioeng Biotechnol20218:621601. DOI:10.3389/fbioe.2020.621601.
[47]
Le PTM, Shintani SA, Takadama H,et al. Bioactivation treatment with mixed acid and heat on titanium implants fabricated by selective laser melting enhances preosteoblast cell differentiation[J]. Nanomaterials(Basel)202111(4):987. DOI:10.3390/nano11040987.
[48]
Xu R, Hu X, Yu X,et al. Micro-/nano-topography of selective laser melting titanium enhances adhesion and proliferation and regulates adhesion-related gene expressions of human gingival fibroblasts and human gingival epithelial cells[J]. Int J Nanomedicine201813:5045-5057. DOI:10.2147/IJN.S166661.
[49]
Dantas T, Madeira S, Gasik M,et al. Customized root-analogue implants:A review on outcomes from clinical trials and case reports[J]. Materials(Basel)202114(9):2296. DOI:10.3390/ma14092296.
[50]
王宁,李杰,王晓龙,等.应用3D打印熔融沉积技术制作个性化种植修复体的精确度研究[J].华西口腔医学杂志201533(5):509-512. DOI:10.7518/hxkq.2015.05.015.
[51]
黄硕,郭芳,刘宁,等. 3D打印个性化根形钛合金种植体在下颌磨牙区即刻种植的临床研究[J].口腔医学研究202137(7):602-606. DOI:10.13701/j.cnki.kqyxyj.2021.07.006.
[52]
Mangano F, Pozzi-Taubert S, Zecca PA,et al. Immediate restoration of fixed partial prostheses supported by one-piece narrow-diameter selective laser sintering implants:A 2-year prospective study in the posterior jaws of 16 patients[J]. Implant Dent201322(4):388-393. DOI:10.1097/ID.0b013e31829afa9d.
[53]
Mangano FG, Caprioglio A, Levrini L,et al. Immediate loading of mandibular overdentures supported by one-piece,direct metal laser sintering mini-implants:A short-term prospective clinical study[J]. J Periodontol201586(2):192-200. DOI:10.1902/jop.2014.140343.
[54]
Tunchel S, Blay A, Kolerman R,et al. 3D printing/additive manufacturing single titanium dental implants:A prospective multicenter study with 3 years of follow-up[J]. Int J Dent2016:8590971. DOI:10.1155/2016/8590971.
[55]
Mangano F, Luongo F, Shibli JA,et al. Maxillary overdentures supported by four splinted direct metal laser sintering implants:A 3-year prospective clinical study[J]. Int J Dent2014:252343. DOI:10.1155/2014/252343
[56]
Selvaraj SK, Prasad SK, Yasin SY,et al. Additive manufacturing of dental material parts via laser melting deposition:A review,technical issues,and future research directions[J]. J Manuf Process202276:67-78. DOI:10.1016/j.jmapro.2022.02.012.
[57]
Aufa AN, Hassan MZ, Ismail Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants:Prospect development[J]. J Alloy Compd2022896:163072. DOI:10.1016/j.jallcom.2021.163072.
[58]
中国医疗器械行业协会3D打印医疗器械专业委员会. T/CAMDI 044-2020增材制造(3D打印)口腔金属种植体[S]. 2020.
[59]
中国医疗器械行业协会3D打印医疗器械专业委员会. T/CAMDI 043-2020增材制造(3D打印)个性化种植体[S]. 2020.
[1] 张聚良, 姚青, 黄美玲, 张明坤, 孟慧敏, 侯兰, 凌瑞. 计算机辅助3D打印技术用于保留乳房手术一期乳房重建[J]. 中华乳腺病杂志(电子版), 2018, 12(01): 12-16.
[2] 李芸, 舒天羽, 郭四毓, 乔栒柏, 游云华. 增材制造Ti-6Al-4V钛合金种植体骨结合的动物实验研究[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 241-247.
[3] 王文铄, 蔡艳玲, 蒋宏伟, 韦曦. 锥形束CT与导板引导微创开髓精确性的体外研究[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 158-165.
[4] 郭丽娜, 王晓东, 张新平, 简裕涛, 赵克. 代型材料力学性能对磨牙氧化锆全瓷冠断裂失效行为的影响[J]. 中华口腔医学研究杂志(电子版), 2019, 13(01): 7-12.
[5] 丁向前, 杨璐瑶, 李珍珠, 王清波, 陈正, 孙其凯, 耿鑫, 李泽福. 三维打印个体化导板定位下微创穿刺HCH的疗效探讨[J]. 中华神经创伤外科电子杂志, 2017, 03(05): 260-263.
阅读次数
全文


摘要