切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 158 -165. doi: 10.3877/cma.j.issn.1674-1366.2019.03.005

所属专题: 文献

基础研究

锥形束CT与导板引导微创开髓精确性的体外研究
王文铄1, 蔡艳玲1, 蒋宏伟1,(), 韦曦1   
  1. 1. 中山大学光华口腔医学院·附属口腔医院,广东省口腔医学重点实验室,广州 510055
  • 收稿日期:2019-01-12 出版日期:2019-06-01
  • 通信作者: 蒋宏伟

Accuracy of using cone-beam computed tomography and guided templates for minimally invasive endodontic cavity preparation: an in vitro study

Wenshuo Wang1, Yanling Cai1, Hongwei Jiang1,(), Xi Wei1   

  1. 1. Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2019-01-12 Published:2019-06-01
  • Corresponding author: Hongwei Jiang
  • About author:
    Corresponding author: Jiang Hongwei, Email:
  • Supported by:
    Natural Science Foundation of Guangdong Province(2017A030308011)
引用本文:

王文铄, 蔡艳玲, 蒋宏伟, 韦曦. 锥形束CT与导板引导微创开髓精确性的体外研究[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 158-165.

Wenshuo Wang, Yanling Cai, Hongwei Jiang, Xi Wei. Accuracy of using cone-beam computed tomography and guided templates for minimally invasive endodontic cavity preparation: an in vitro study[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2019, 13(03): 158-165.

目的

研究锥形束CT(CBCT)与三维打印导板引导微创开髓造成的偏移距离与偏移角度,探讨该操作的精确性。

方法

收集40颗人离体单根双根管上颌第一前磨牙,开髓前进行CBCT扫描。对所有样本进行编号,通过随机数字表法将样本分为A、B两组,每组20颗牙,包括40个根管。微创开髓洞型采用"Truss"开髓洞型的设计。其中A组为三维打印导板引导开髓组,根据CBCT图像制作导板;B组为CBCT引导开髓组,根据CBCT图像确定面开髓的位置与方向,于样本标记后直接开髓。两组样本开髓后,在CBCT图像中测量并计算各开髓孔在面与髓角平面的面积、颊腭向与近远中向的偏移距离及偏移角度,使用SPSS 20.0软件进行统计学分析。

结果

各组数据不满足正态分布及方差齐性,故采用Mann-Whitney U检验分析。开髓孔在面平面的面积分别为A组(1.34 ± 0.18)mm2、B组(1.30 ± 0.15)mm2,差异无统计学意义(U=0.876,P=0.393)。髓角平面的面积分别为A组(1.74 ± 0.20)mm2、B组(1.67 ± 0.24)mm2,差异无统计学意义(U=1.290,P=0.194)。B组面近远中偏移距离[(0.37 ± 0.26)mm]小于A组[(0.52 ± 0.30)mm],差异具有统计学意义(U=2.237,P=0.024)。两组的面颊腭向偏移距离、髓角颊腭向偏移距离、髓角近远中偏移距离、颊腭向偏移角度及近远中偏移角度间差异均无统计学意义(P>0.05)。

结论

单独使用CBCT可精确引导常规根管解剖形态患牙的微创开髓,CBCT结合导板对引导微创开髓的精确性与单独使用CBCT相比无显著提高,且两种引导方法对微创开髓洞型的大小无明显影响。

Objectives

The aim of this study was to investigate the accuracy of minimally invasive endodontic cavity preparation with the guidance of cone-beam computed tomography (CBCT) and three-dimensional printed templates through analyzing distance deviation and angle deviation.

Methods

Forty extracted human single-rooted maxillary first premolars with double root canals were selected. Preoperative CBCT scanning of all specimens was used for designing access cavities. All teeth were numbered and assigned into two groups according to the random number table. There were twenty teeth including forty root canals in each group. The minimally invasive endodontic cavity was designed as "Truss" access cavity. Preparation for access cavities in group A was guided by three-dimensional printed templates which were fabricated according to the CBCT images. Access cavities in group B were prepared according to the marks on occlusal surface after the analysis of CBCT images. Distance deviations and angle deviations in buccopalatal and mesiodistal directions as well as the areas of access cavities at occlusal and pulp horn levels were measured and calculated in the CBCT images. Statistical analysis for the data was performed by SPSS 20.0.

Results

The data were analyzed with Mann-Whitney U test, since they were not satisfied with the normal distribution and the homogeneity of variance. No statistic difference was observed between the two groups in the areas of access cavities at occlusal level [group A: (1.34 ± 0.18) mm2, group B: (1.30 ± 0.15) mm2; U=0.876, P=0.393] or at pulp horn level [group A: (1.74 ± 0.20) mm2, group B: (1.67 ± 0.24) mm2; U=1.290, P=0.194]. The mesiodistal distance deviations at occlusal level in group B [ (0.37 ± 0.26) mm] were less than that in group A [ (0.52 ± 0.30) mm], which had significant difference (U=2.237, P=0.024) . There was no significant difference between the two groups in the buccopalatal distance deviations of occlusal level [group A: (0.45 ± 0.40) mm, group B: (0.41 ± 0.28) mm; U=0.385, P=0.697], the buccopalatal distance deviations of pulp horn level [group A: (0.32 ± 0.25) mm, group B: (0.41 ± 0.30) mm; U=1.290, P=0.199], the mesiodistal distance deviations of pulp horn level [group A: (0.38 ± 0.24) mm, group B: (0.35 ± 0.26) mm; U=0.905, P=0.500], as well as the buccopalatal angle deviations [group A: (4.76 ± 3.04) °, group B: (4.72 ± 3.61) °; U=0.404, P=0.679] or the mesiodistal angle deviations [group A: (3.04 ± 1.97) °, group B: (3.05 ± 2.45) °; U=0.467, P=0.637].

Conclusions

CBCT scanning was able to accurately guide the preparation of the minimally invasive endodontic cavities for the teeth with normal root canal anatomy. The guidance of CBCT scanning with templates did not significantly enhance the accuracy of access cavities, compared to that of CBCT scanning alone. Moreover, no significant difference was detected in the actual sizes of "Truss" access cavities prepared with the guidance of the two approaches.

图2 石膏灌注A组离体上颌第一前磨牙样本样本模型
图3 Mimics软件读取样本CBCT图像确定开髓前开髓起点与开髓角度 A:确定点r为根管口中心;B:确定点p为髓角中心;C:在矢状面确定开髓起点位置与开髓前的颊腭向开髓角度,其中o为开髓起点,p为髓角中点,t为腭尖最高点,x1和x2分别为o和p与腭尖最高点在矢状面上的垂直距离,a1和a2分别为o和p与腭尖最高点在矢状面上的水平距离,α为开髓前的颊腭向开髓角度;D:在冠状面确定开髓起点位置与开髓前的近远中向开髓角度,其中o为开髓起点,p为髓角中点,h为o与p的垂直距离,b1和b2分别为o和p与近中最凸处在冠状面上的水平距离,β为开髓前的近远中开髓角度
图4 应用GuideMia软件设计导板引导开髓的髓腔通路 A:确定髓腔通路与牙髓的位置关系;B:确定髓腔通路与牙的位置关系
图5 Project 3D打印机制作不同引导高度的开髓导板
图6 "Truss"洞型制备后样本的面观
图8 Mimics软件测定冠状面面和髓角开髓中点与近中最凸处的近远中向距离以及开髓后的近远中向开髓角度o′为面开髓中点;p′为髓角开髓中点;h为o′与p′的垂直距离;b′1和b′2分别为o′和p′与近中最凸处在冠状面上的水平距离;β′为颊腭向开髓角度
表1 开髓孔在面及髓角平面的面积(mm2
表2 面开髓中点在颊腭向与近远中向的偏移距离(mm)
表3 髓角开髓中点在颊腭向与近远中向的偏移距离(mm)
表4 开髓前后的"Truss"洞型在颊腭向与近远中向的偏移角度(°)
[1]
Gutmann JL. Minimally invasive dentistry(Endodontics)[J]. J Conserv Dent, 2013, 16(4): 282-283. DOI: 10.4103/0972-0707.114342.
[2]
Gluskin AH, Peters CI, Peters OA. Minimally invasive endodontics: challenging prevailing paradigms[J]. Br Dent J, 2014, 216(6): 347-353. DOI: 10.1038/sj.bdj.2014.201.
[3]
Clark D, Khademi J. Modern molar endodontic access and directed dentin conservation[J]. Dent Clin North Am, 2010, 54(2): 249-273. DOI: 10.1016/j.cden.2010.01.001.
[4]
Buchanan LS. Cutting endodontic access cavities—for long term outcomes[J]. Roots Int Ed, 2015(6): 12-16.
[5]
Plotino G, Grande NM, Isufi A, et al. Fracture strength of endodontically treated teeth with different access cavity designs[J]. J Endod, 2017, 43(6): 995-1000. DOI: 10.1016/j.joen.2017.01.022.
[6]
Neelakantan P, Khan K, Hei Ng GP, et al. Does the Orifice-directed dentin conservation access design debride pulp chamber and mesial root canal systems of mandibular molars similar to a traditional access design?[J]. J Endod, 2018, 44(2): 272-279. DOI: 10.1016/j.joen.2017.10.010.
[7]
Kiljunen T, Kaasalainen T, Suomalainen A, et al. Dental cone beam CT: a review[J]. Phys Med, 2015, 31(8): 844-860. DOI: 10.1016/j.ejmp.2015.09.004.
[8]
van der Meer WJ, Vissink A, Ng YL, et al. 3D Computer aided treatment planning in endodontics[J]. J Dent, 2016(45): 67-72. DOI: 10.1016/j.jdent.2015.11.007.
[9]
Krastl G, Zehnder MS, Connert T, et al. Guided Endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology[J]. Dent Traumatol, 2016, 32(3): 240-246. DOI: 10.1111/edt.12235.
[10]
Connert T, Zehnder MS, Amato M, et al. Microguided Endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique[J]. Int Endod J, 2018, 51(2): 247-255. DOI: 10.1111/iej.12809.
[11]
Lara-Mendes STO, Barbosa CFM, Santa-Rosa CC, et al. Guided endodontic access in maxillary molars using cone-beam computed tomography and computer-aided design/computer-aided manufacturing system: a case report[J]. J Endod, 2018, 44(5): 875-879. DOI: 10.1016/j.joen.2018.02.009.
[12]
Zubizarreta Macho Á, Ferreiroa A, Rico-Romano C, et al. Diagnosis and endodontic treatment of type Ⅱ dens invaginatus by using cone-beam computed tomography and splint guides for cavity access: a case report[J]. J Am Dent Assoc, 2015, 146(4): 266-270. DOI: 10.1016/j.adaj.2014.11.021.
[13]
Zehnder MS, Connert T, Weiger R, et al. Guided endodontics: accuracy of a novel method for guided access cavity preparation and root canal location[J]. Int Endod J, 2015, 49(10): 966-972. DOI: 10.1111/iej.12544.
[14]
Connert T, Zehnder MS, Weiger R, et al. Microguided endodontics: accuracy of a miniaturized technique for apically extended access cavity preparation in anterior teeth[J]. J Endod, 2017, 43(5): 787-790. DOI: 10.1016/j.joen.2016.12.016.
[15]
Ludlow JB, Timothy R, Walker C, et al. Effective dose of dental CBCT - a meta analysis of published data and additional data for 9 CBCT units[J]. Dentomaxillofac Radiol, 2015, 44(1): 2014 0197. DOI: 10.1259/dmfr.20140197.
[16]
Tu MG, Huang HL, Hsue SS, et al. Detection of permanent three-rooted mandibular first molars by cone-beam computed tomogra phy imaging in Taiwanese individuals[J]. J Endod, 2009, 35(4): 503-507. DOI: 10.1016/j.joen.2008.12.013.
[17]
Patel S. The use of cone beam computed tomography in the conservative management of dens invaginatus: a case report[J]. Int Endod J, 2010, 43(8): 707-713.DOI: 10.1111/j.1365-2591.2010.01734.x.
[18]
Mamoun JS. The maxillary molar endodontic access opening: A microscope-based approach[J]. Eur J Dent, 2016, 10(3): 439-446. DOI: 10.4103/1305-7456.184153.
[19]
Rover G, Belladonna FG, Bortoluzzi EA, et al. Influence of access cavity design on root canal detection, instrumentation efficacy, and fracture resistance assessed in maxillary molars[J]. J Endod, 2017, 43(10): 1657-1662. DOI: 10.1016/j.joen.2017.05.006.
[20]
Buchgreitz J, Buchgreitz M, Mortensen D, et al. Guided access cavity preparation using cone-beam computed tomography and optical surface scans—an ex vivo study[J]. Int Endod J, 2016, 49(8): 790-795. DOI: 10.1111/iej.12516.
[21]
Larsson CM. The 2007 Recommendations of the International Commission on Radiological Protection[J]. Ann ICRP, 2007, 37(2-4): 1-332.
[22]
Kadesjö N, Lynds R, Nilsson M, et al. Radiation dose from X-ray examinations of impacted canines: cone beam CT vs. two-dimensional imaging[J]. Dentomaxillofac Radiol, 2018, 47(3): 20170305. DOI: 10.1259/dmfr.20170305.
[23]
Spin-Neto R, Gotfredsen E, Wenzel A. Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review[J]. J Digit Imaging, 2013, 26(4): 813-820. DOI: 10.1007/s10278-012-9562-7.
[24]
European Society of Endodontology, Patel S, Durack C, et al. European Society of Endodontology position statement: the use of CBCT in endodontics[J]. Int Endod J, 2014, 47(6): 502-504. DOI: 10.1111/iej.12267.
[25]
Clark DP, Badea CT. Micro-CT of rodents: State-of-the-art and future perspectives[J]. Phys Med, 2014, 30(6): 619-634. DOI: 10.1016/j.ejmp.2014.05.011.
[26]
Fayad MI, Nair M, Levin MD, et al. AAE and AAOMR joint position statement: use of cone beam computed tomography in endodontics 2015 update[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2015, 120(4): 508-512. DOI: 10.1016/j.oooo.2015.07.033.
[1] 张聚良, 姚青, 黄美玲, 张明坤, 孟慧敏, 侯兰, 凌瑞. 计算机辅助3D打印技术用于保留乳房手术一期乳房重建[J]. 中华乳腺病杂志(电子版), 2018, 12(01): 12-16.
[2] 陈星星, 胡才宝, 颜默磊, 蔡国龙. 二氧化碳偏移度对脓毒性休克患者液体复苏后微循环变化的预测价值[J]. 中华危重症医学杂志(电子版), 2019, 12(05): 311-316.
[3] 王可心, 葛胜优, 王琳, 李洁莹, 宋凯, 尚伟. Stafne骨腔10例:从影像分析到诊疗思路[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 353-358.
[4] 黄石头, 魏洪波, 李德华. 三维打印钛种植体性能及临床应用的研究进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 1-9.
[5] 张丹楠, 雍敏, 崔文月, 刘伟. 上颌骨宽度不足诊断方法的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(01): 59-65.
[6] 曾素云, 郭凤芹, 王建广. 锥形束CT评估与下颌阻生第三磨牙相关的第二磨牙远中牙槽骨缺损的危险因素[J]. 中华口腔医学研究杂志(电子版), 2021, 15(01): 13-17.
[7] 邹晖, 李朝晖, 徐盛, 冯金兰. 不同垂直骨面型成人上下颌后牙区皮质骨密度测量研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 308-313.
[8] 周炼, 张东强, 徐海涛. 青少年骨性Ⅱ类高角错患者颞下颌关节形态的锥形束CT研究[J]. 中华口腔医学研究杂志(电子版), 2020, 14(04): 235-239.
[9] 王晓, 倪龙兴, 田宇. 微创牙髓病学理念及微创髓腔预备方式[J]. 中华口腔医学研究杂志(电子版), 2020, 14(03): 133-137.
[10] 钟奇帜, 孔令佳, 周振邦. 口腔颌面锥形束CT评估非手术治疗慢性牙周炎上颌窦的黏膜变化[J]. 中华口腔医学研究杂志(电子版), 2019, 13(04): 235-241.
[11] 苏凯, 欧发荣, 张志光, 郑有华. 颞下颌关节滑膜软骨瘤病的临床及影像学特征分析[J]. 中华口腔医学研究杂志(电子版), 2019, 13(03): 174-179.
[12] 武东辉, 曹少萍, 朱韵莹, 梁坚强. 上颌埋伏阻生第三磨牙78例微创拔除的临床总结[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 53-58.
[13] 王艳红, 朱晓华, 李斯文, 李施施, 张皓, 史秀娣, 马红梅. 虚拟实验室Simodont系统用于口腔医学窝洞预备教学的效果评价[J]. 中华口腔医学研究杂志(电子版), 2017, 11(02): 119-125.
[14] 房俊艳, 李东柱, 贾云飞. 锥形束CT在诊治牙体根尖周病中的应用进展[J]. 中华口腔医学研究杂志(电子版), 2015, 09(06): 504-507.
[15] 丁向前, 杨璐瑶, 李珍珠, 王清波, 陈正, 孙其凯, 耿鑫, 李泽福. 三维打印个体化导板定位下微创穿刺HCH的疗效探讨[J]. 中华神经创伤外科电子杂志, 2017, 03(05): 260-263.
阅读次数
全文


摘要