| [1] |
Rathmann F, Pohl M, Rammelsberg P,et al. Up to 10 years clinical performance of zirconia ceramic and metal-ceramic fixed partial dentures:A retrospective study[J]. J Prosthet Dent, 2024, 132(4):756-765. DOI: 10.1016/j.prosdent.2022.11.003.
|
| [2] |
Sailer I, Balmer M, Hüsler J,et al. 10-year randomized trial (RCT)of zirconia-ceramic and metal-ceramic fixed dental prostheses[J]. J Dent, 2018, 76:32-39. DOI: 10.1016/j.jdent.2018.05.015.
|
| [3] |
Shrestha R, Fredeen S, Reddy N,et al. Thermal stresses in porcelain veneered lithium disilicate and zirconia dental crowns:Comparative analysis using a validated viscoelastic finite element model[J]. J Mech Behav Biomed Mater, 2025, 163:106895. DOI: 10.1016/j.jmbbm.2025.106895.
|
| [4] |
Dhital S, Rodrigues C, Zhang Y,et al. Metal-ceramic and porcelain-veneered lithium disilicate crowns:A stress profile comparison using a viscoelastic finite element model[J]. Comput Methods Biomech Biomed Engin, 2022, 25(4):412-423. DOI: 10.1080/10255842.2021.1955869.
|
| [5] |
Zhou M, Zhang X, Zhang Y,et al. Investigation of the structure and mechanical properties of a novel dental graded glass/zirconia ceramic[J]. J Eur Ceram Soc, 2023, 43(13):5671-5681. DOI: 10.1016/j.jeurceramsoc.2023.05.039.
|
| [6] |
Swain MV. Unstable cracking(chipping)of veneering porcelain on all-ceramic dental crowns and fixed partial dentures[J]. Acta Biomater, 2009, 5(5):1668-1677. DOI: 10.1016/j.actbio.2008.12.016.
|
| [7] |
Kim J, Dhital S, Zhivago P,et al. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns[J]. J Mech Behav Biomed Mater, 2018, 82:202-209. DOI: 10.1016/j.jmbbm.2018.03.020.
|
| [8] |
Belli R, Monteiro S Jr, Baratieri LN,et al. A photoelastic assessment of residual stresses in zirconia-veneer crowns[J]. J Dent Res, 2012, 91(3):316-320. DOI: 10.1177/0022034511435100.
|
| [9] |
|
| [10] |
Moreira Bastos Campos T, Marques de Melo Marinho R, de Oliveira Pinto Ribeiro A,et al. Microstructure and mechanical properties of fully sintered zirconia glazed with an experimental glass[J]. J Mech Behav Biomed Mater, 2021, 113:104093. DOI: 10.1016/j.jmbbm.2020.104093.
|
| [11] |
Shelar P, Abdolvand H, Butler S. On the behaviour of zirconia-based dental materials:A review[J]. J Mech Behav Biomed Mater, 2021, 124:104861. DOI: 10.1016/j.jmbbm.2021.104861.
|
| [12] |
Ren L, Janal MN, Zhang Y. Sliding contact fatigue of graded zirconia with external esthetic glass[J]. J Dent Res, 2011, 90(9):1116-1121. DOI: 10.1177/0022034511412075.
|
| [13] |
Chai H, Mieleszko AJ, Chu SJ,et al. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures[J]. Dent Mater, 2018, 34(1):e8-e14. DOI: 10.1016/j.dental.2017.11.004.
|
| [14] |
Cui C, Sun J. Optimizing the design of bio-inspired functionally graded material(FGM)layer in all-ceramic dental restorations[J]. Dent Mater J, 2014, 33(2):173-178. DOI: 10.4012/dmj.2013-264.
|
| [15] |
Tanaka CB, Ballester RY, de Souza GM,et al. Influence of residual thermal stresses on the edge chipping resistance of PFM and veneered zirconia structures:Experimental and FEA study[J]. Dent Mater, 2019, 35(2):344-355. DOI: 10.1016/j.dental.2018.11.034.
|
| [16] |
|
| [17] |
Abdullah AO, Yu H, Pollington S,et al. Effect of repeated laser surface treatments on shear bond strength between zirconia and veneering ceramic[J]. J Prosthet Dent, 2020, 123(2):338.e1-338.e6. DOI: 10.1016/j.prosdent.2019.10.007.
|
| [18] |
Kim SH, Park CJ, Cho LR,et al. Evaluation of the ceramic liner bonding effect between zirconia and lithium disilicate[J]. J Prosthet Dent, 2018, 120(2):282-289. DOI: 10.1016/j.prosdent.2017.10.022.
|
| [19] |
Moon JE, Kim SH, Lee JB,et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement[J]. Ceram Int, 2016, 42(1):1552-1562. DOI: 10.1016/j.ceramint.2015.09.104.
|
| [20] |
Su N, Yue L, Liao Y,et al. The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin[J]. J Adv Prosthodont, 2015, 7(3):214-223. DOI: 10.4047/jap.2015.7.3.214.
|
| [21] |
Kim HK, Yoo KW, Kim SJ,et al. Phase transformations and subsurface changes in three dental zirconia grades after sandblasting with various Al 2O 3 particle sizes[J]. Materials, 2021, 14(18):5321. DOI: 10.3390/ma14185321.
|
| [22] |
Öztürk C, Çelik E, Gönüldaş F. Effect of different surface treatments on the biaxial flexural strength of zirconia ceramics[J]. J Prosthet Dent, 2023, 129(1):220.e1-220.e5. DOI: 10.1016/j.prosdent.2022.11.008.
|
| [23] |
Okada M, Taketa H, Hara ES,et al. Improvement of mechanical properties of Y-TZP by thermal annealing with monoclinic zirconia nanoparticle coating[J]. Dent Mater, 2019, 35(7):970-978. DOI: 10.1016/j.dental.2019.04.002.
|
| [24] |
Huang B, Chen M, Wang J,et al. Advances in zirconia-based dental materials:Properties,classification,applications,and future prospects[J]. J Dent, 2024, 147:105111. DOI: 10.1016/j.jdent.2024.105111.
|
| [25] |
Kurtulmus-Yilmaz S, Aktore H. Effect of the application of surface treatments before and after sintering on the flexural strength,phase transformation and surface topography of zirconia[J]. J Dent, 2018, 72:29-38. DOI: 10.1016/j.jdent.2018.02.006.
|
| [26] |
Aurélio IL, Marchionatti AM, Montagner AF,et al. Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and Meta-analysis[J]. Dent Mater, 2016, 32(6):827-845. DOI: 10.1016/j.dental.2016.03.021.
|
| [27] |
Mirt T, Kocjan A, Hofer AK,et al. Effect of airborne particle abrasion and regeneration firing on the strength of 3D-printed 3Y and 5Y zirconia ceramics[J]. Dent Mater, 2024, 40(1):111-117. DOI: 10.1016/j.dental.2023.10.025.
|
| [28] |
Liu D, Matinlinna JP, Tsoi JK,et al. A new modified laser pretreatment for porcelain zirconia bonding[J]. Dent Mater, 2013, 29(5):559-565. DOI: 10.1016/j.dental.2013.03.002.
|
| [29] |
Zaher AM, Hochstedler JL, Rueggeberg FA,et al. Shear bond strength of zirconia-based ceramics veneered with 2 different techniques[J]. J Prosthet Dent, 2017, 118(2):221-227. DOI: 10.1016/j.prosdent.2016.11.016.
|
| [30] |
|
| [31] |
Teng WS, Yew HZ, Jamadon NH,et al. Effect of porcelain veneering technique in bilayered zirconia on bond strength and residual stress distribution[J]. J Mech Behav Biomed Mater, 2024, 151:106361. DOI: 10.1016/j.jmbbm.2023.106361.
|
| [32] |
Yoon HI, Yeo IS, Yi YJ,et al. Effect of surface treatment and liner material on the adhesion between veneering ceramic and zirconia[J]. J Mech Behav Biomed Mater, 2014, 40:369-374. DOI: 10.1016/j.jmbbm.2014.09.017.
|
| [33] |
Ebeid K, Wille S, Salah T,et al. Evaluation of surface treatments of monolithic zirconia in different sintering stages[J]. J Prosthodont Res, 2018, 62(2):210-217. DOI: 10.1016/j.jpor.2017.09.001.
|
| [34] |
Martins FV, Mattos CT, Cordeiro WJB,et al. Evaluation of zirconia surface roughness after aluminum oxide airborne-particle abrasion and the erbium-YAG,neodymium-doped YAG,or CO 2 lasers:A systematic review and Meta-analysis[J]. J Prosthet Dent, 2019, 121(6):895-903.e2. DOI: 10.1016/j.prosdent.2018.07.001.
|
| [35] |
|
| [36] |
Li W, Ding Q, Sun F,et al. Fatigue behavior of zirconia with microgrooved surfaces produced using femtosecond laser[J]. Lasers Med Sci, 2023, 38(1):33. DOI: 10.1007/s10103-022-03679-w.
|
| [37] |
Henriques B, Fabris D, Souza JCM,et al. Bond strength enhancement of zirconia-porcelain interfaces via Nd:YAG laser surface structuring[J]. J Mech Behav Biomed Mater, 2018, 81:161-167. DOI: 10.1016/j.jmbbm.2018.02.031.
|
| [38] |
|
| [39] |
Han J, Zhang F, van Meerbeek B,et al. Laser surface texturing of zirconia-based ceramics for dental applications:A review[J]. Mater Sci Eng C Mater Biol Appl, 2021, 123:112034. DOI: 10.1016/j.msec.2021.112034.
|
| [40] |
D'Alessandro C, Josic U, Mazzitelli C,et al. Is zirconia surface etching a viable alternative to airborne particle abrasion? A systematic review and Meta-analysis of in vitro studies[J]. J Dent, 2024, 151:105394. DOI: 10.1016/j.jdent.2024.105394.
|
| [41] |
|
| [42] |
Wattanasirmkit K, Srimaneepong V, Kanchanatawewat K,et al. Improving shear bond strength between feldspathic porcelain and zirconia substructure with lithium disilicate glass-ceramic liner[J]. Dent Mater J, 2015, 34(3):302-309. DOI: 10.4012/dmj.2014-319.
|
| [43] |
Bitencourt SB, Dos Santos DM, Bastos-Bitencourt NA,et al. Surface characterization of different surface treatments associations with plasma and bonding analysis of Y-TZP and the veneering ceramic[J]. Dent Mater, 2021, 37(12):1873-1883. DOI: 10.1016/j.dental.2021.10.004.
|
| [44] |
Liu YC, Hsieh JP, Chen YC,et al. Promoting porcelain-zirconia bonding using different atmospheric pressure gas plasmas[J]. Dent Mater, 2018, 34(8):1188-1198. DOI: 10.1016/j.dental.2018.05.004.
|
| [45] |
Barquete CG, Simão RA, Almeida Fonseca SS,et al. Effect of cementation delay on bonding of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic treated with nonthermal argon plasma[J]. J Prosthet Dent, 2021, 125(4):693.e1-693.e7. DOI: 10.1016/j.prosdent.2020.11.032.
|
| [46] |
|
| [47] |
Liu R, Sun T, Zhang Y,et al. The effect of graded glass-zirconia structure on the bond between core and veneer in layered zirconia restorations[J]. J Mech Behav Biomed Mater, 2015, 46:197-204. DOI: 10.1016/j.jmbbm.2015.02.017.
|
| [48] |
Zhou M, Zhang X, Zhang Y,et al. Construction of nanostructured glass-zirconia to improve the interface stability of dental bilayer zirconia[J]. Nanomaterials, 2023, 13(4):678. DOI: 10.3390/nano13040678.
|
| [49] |
Dai K, Wu J, Zhao Z,et al. Surface texture designs to improve the core-veneer bond strength of zirconia restorations using digital light processing[J]. Materials(Basel), 2023, 16(18):6072. DOI: 10.3390/ma16186072.
|
| [50] |
|