[29] |
Gebert M, Sobolewska A, Bartoszewska S,et al. Genome-wide mRNA profiling identifies X-box-binding protein 1(XBP1)as an IRE1 and PUMA repressor[J]. Cell Mol Life Sci, 2021, 78(21-22):7061-7080. DOI: 10.1007/s00018-021-03952-1.
|
[30] |
Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis[J]. Oncogene, 2008, 27(48):6245-6251. DOI: 10.1038/onc.2008.301.
|
[31] |
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(1):188569. DOI: 10.1016/j.bbcan.2021.188569.
|
[32] |
Cui Z, Qin R, Feng J,et al. XBP1s gene of endoplasmic reticulum stress enhances proliferation and osteogenesis of human periodontal ligament cells[J]. Tissue Cell, 2023, 83:102139. DOI: 10.1016/j.tice.2023.102139.
|
[33] |
Shirakawa K, Maeda S, Gotoh T,et al. CCAAT/enhancer-binding protein homologous protein(CHOP)regulates osteoblast differentiation[J]. Mol Cell Biol, 2006, 26(16):6105-6116. DOI: 10.1128/MCB.02429-05.
|
[34] |
Iyer S, Melendez-Suchi C, Han L,et al. Elevation of the unfolded protein response increases RANKL expression[J]. FASEB BioAdv, 2020, 2(4):207-218. DOI: 10.1096/fba.2019-00032.
|
[35] |
Cao W, Zhang T, Feng R,et al. Hoxa5 alleviates obesity-induced chronic inflammation by reducing ER stress and promoting M2 macrophage polarization in mouse adipose tissue[J]. J Cellular Molecular Medi, 2019, 23(10):7029-7042. DOI: 10.1111/jcmm.14600.
|
[36] |
Kim JH, Kim K, Kim I,et al. Endoplasmic reticulum-bound transcription factor crebh stimulates RANKL-Induced osteoclastogenesis[J]. J Immunol, 2018, 200(5):1661-1670. DOI: 10.4049/jimmunol.1701036.
|
[37] |
Wang Z, Liu N, Zhou G,et al. Expression of XBP1s infibroblasts is critical for TiAl 6V 4 particle-induced RANKL expression and osteolysis[J]. J Orthop Res, 2017, 35(4):752-759. DOI: 10.1002/ior.23056.
|
[38] |
Du N, Wu K, Zhang J,et al. Inonotsuoxide B regulates M1 to M2 macrophage polarization through sirtuin-1/endoplasmic reticulum stress axis[J]. Int Immunopharmacol, 2021, 96:107603. DOI: 10.1016/j.intimp.2021.107603.
|
[39] |
Yang F, Wang S, Liu Y,et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells[J]. Free Radic Biol Med, 2018, 124:395-407. DOI: 10.1016/j.freeradbiomed.2018.06.043.
|
[40] |
Yamazaki H, Hiramatsu N, Hayakawa K,et al. Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response[J]. J Immunol, 2009, 183(2):1480-1487. DOI: 10.4049/jimmunol.0900017.
|
[41] |
Victor P, Sarada D, Ramkumar KM. Crosstalk between endoplasmic reticulum stress and oxidative stress:Focus on protein disulfide isomerase and endoplasmic reticulum oxidase 1[J]. Eur J Pharmacol, 2021, 892:173749. DOI: 10.1016/j.ejphar.2020.173749.
|
[42] |
Sepulveda D, Rojas-Rivera D, Rodríguez DA,et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α[J]. Molecular Cell, 2018, 69(2):238-252.e7. DOI: 10.1016/j.molcel.2017.12.028.
|
[43] |
Li M, Huang S, Zhang Y,et al. Regulation of the unfolded protein response transducer IRE1α by SERPINH1 aggravates periodontitis with diabetes mellitus via prolonged ER stress[J]. Cell Signal, 2022, 91:110241. DOI: 10.1016/j.cellsig.2022.110241.
|
[44] |
Zheng J, Zhu X, He Y,et al. CircCDK8 regulates osteogenic differentiation and apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia[J]. Ann N Y Acad Sci, 2021, 1485(1):56-70. DOI: 10.1111/nyas.14483.
|
[45] |
Tan J, Zhou L, Xue P,et al. Tumor necrosis factor-α attenuates the osteogenic differentiation capacity of periodontal ligament stem cells by activating PERK signaling[J]. J Periodontol, 2016, 87(8):e159-e171. DOI: 10.1902/jop.2016.150718.
|
[46] |
Zhao X, Zhang G, Wu L,et al. Inhibition of ER stress-activated JNK pathway attenuates TNF-α-induced inflammatory response in bone marrow mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2021, 541:8-14. DOI: 10.1016/j.bbrc.2020.12.101.
|
[47] |
Chen Y, Guo Y, Li J,et al. Endoplasmic reticulum stress remodels alveolar bone formation after tooth extraction[J]. J Cell Mol Med, 2020, 24(21):12411-12420. DOI: 10.1111/jcmm.15753.
|
[48] |
Yan G, Yuan Y, He M,et al. m 6A methylation of precursor-miR-320/RUNX2 controls osteogenic potential of bone marrow-derived mesenchymal stem cells[J]. Mol Ther Nucleic Acids, 2020, 19:421-436. DOI: 10.1016/j.omtn.2019.12.001.
|
[49] |
Zhang Y, Gu X, Li D,et al. METTL3 regulates osteoblast differentiation and inflammatory response via smad signaling and MAPK signaling[J]. Int J Mol Sci, 2019, 21(1):199. DOI: 10.3390/ijms21010199.
|
[50] |
Feng ZW, Peng B, Wang SH,et al. METTL3-mediated m6A modification of SOX4 regulates osteoblast proliferation and differentiation via YTHDF3 recognition[J]. Cell Signal, 2024, 115:111038. DOI: 10.1016/j.cellsig.2024.111038.
|
[51] |
Kong Y, Zhang Y, Cai Y,et al. METTL3 mediates osteoblast apoptosis by regulating endoplasmic reticulum stress during LPS-induced inflammation[J]. Cell Signal, 2022, 95:110335. DOI: 10.1016/j.cellsig.2022.110335.
|
[52] |
Wu T, Liu Y, Cao Y,et al. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma[J]. Adv Mater, 2022, 34(15):e2110364. DOI: 10.1002/adma.202110364.
|
[53] |
Shen Z, Kuang S, Zhang Y,et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4):1113-1126. DOI: 10.1016/j.bioactmat.2020.07.002.
|
[54] |
Cui Y, Hong S, Xia Y,et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci(Weinh), 2023, 10(27):e2302029. DOI: 10.1002/advs.202302029.
|
[55] |
Ku LC, Sheu ML, Cheng HH,et al. Melatonin protects retinal integrity through mediated immune homeostasis in the sodium iodate-induced mouse model of age-related macular degeneration[J]. Biomed Pharmacother, 2023, 161:114476. DOI: 10.1016/j.biopha.2023.114476.
|
[56] |
Kang M, Huang CC, Lu Y,et al. Bone regeneration is mediated by macrophage extracellular vesicles[J]. Bone, 2020, 141:115627. DOI: 10.1016/j.bone.2020.115627.
|
[57] |
Bouchareychas L, Duong P, Covarrubias S,et al. Macrophage exosomes resolve atherosclerosis by regulating hematopoiesis and inflammation via MicroRNA cargo[J]. Cell Rep, 2020, 32(2):107881. DOI: 10.1016/j.celrep.2020.107881.
|
[58] |
Nakao Y, Fukuda T, Zhang Q,et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater, 2021, 122:306-324. DOI: 10.1016/j.actbio.2020.12.046.
|
[59] |
Li R, Li D, Wang H,et al. Exosomes from adipose-derived stem cells regulate M1/M2 macrophage phenotypic polarization to promote bone healing via miR-451a/MIF[J]. Stem Cell Res Ther, 2022, 13(1):149. DOI: 10.1186/s13287-022-02823-1.
|
[60] |
Trindade-da-Silva CA, Bettaieb A, Napimoga MH,et al. Soluble epoxide hydrolase pharmacological inhibition decreases alveolar bone loss by modulating host inflammatory response,RANK-related signaling,endoplasmic reticulum stress,and apoptosis[J]. J Pharmacol Exp Ther, 2017, 361(3):408-416. DOI: 10.1124/jpet.116.238113.
|
[1] |
Könönen E, Gursoy M, Gursoy UK. Periodontitis:A multifaceted disease of tooth-supporting tissues[J]. J Clin Med, 2019, 8(8):1135. DOI: 10.3390/jcm8081135.
|
[2] |
Zou H, Zhou N, Huang Y,et al. Phenotypes,roles,and modulation of regulatory lymphocytes in periodontitis and its associated systemic diseases[J]. J Leukoc Biol, 2022, 111(2):451-467. DOI: 10.1002/JLB.3VMR0321-027RRR.
|
[3] |
Herrera D, Berglundh T, Schwarz F,et al. Prevention and treatment of peri-implant diseases—The EFP S3 level clinical practice guideline[J]. J Clinic Periodontology, 2023, 50(Suppl 26):4-76. DOI: 10.1111/jcpe.13823.
|
[4] |
Sculean A, Nikolidakis D, Nikou G,et al. Biomaterials for promoting periodontal regeneration in human intrabony defects:A systematic review[J]. Periodontology 2000, 2015, 68(1):182-216. DOI: 10.1111/prd.12086.
|
[5] |
Shin YJ, Vavra U, Strasser R. Proper protein folding in the endoplasmic reticulum is required for attachment of a glycosylphosphatidylinositol anchor in plants[J]. Plant Physiol, 2021, 186(4):1878-1892. DOI: 10.1093/plphys/kiab181.
|
[6] |
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response[J]. Molecular Cell, 2022, 82(8):1477-1491. DOI: 10.1016/j.molcel.2022.03.025.
|
[7] |
Chen X, Shi C, He M,et al. Endoplasmic reticulum stress:Molecular mechanism and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1):352. DOI: 10.1038/s41392-023-01570-w.
|
[8] |
Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment[J]. Nat Rev Cancer, 2021, 21(2):71-88. DOI: 10.1038/s41568-020-00312-2.
|
[9] |
Briggs MD, Dennis EP, Dietmar HF,et al. New developments in chondrocyte ER-stress and related diseases[J]. F1000Res, 2020, 9:F1000 Faculty Rev-290. DOI: 10.12688/f1000research.22275.1.
|
[10] |
Song X, Li J, Jiao M,et al. Effect of endoplasmic reticulum stress-induced apoptosis in the role of periodontitis on vascular calcification in a rat model[J]. J Mol Histol, 2021, 52(5):1097-1104. DOI: 10.1007/s10735-021-10015-z.
|
[11] |
Liu Q, Guo S, Huang Y,et al. Inhibition of TRPA1 ameliorates periodontitis by reducing periodontal ligament cell oxidative stress and apoptosis via PERK/eIF2α/ATF-4/CHOP signal pathway[J]. Oxid Med Cell Longev, 2022:4107915. DOI: 10.1155/2022/4107915.
|
[12] |
Li H, Deng Y, Tan M,et al. Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response[J]. Stem Cell Res Ther, 2020, 11(1):215. DOI: 10.1186/s13287-020-01732-5.
|
[13] |
Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. Nat Rev Mol Cell Biol, 2007, 8(7):519-529. DOI: 10.1038/nrm2199.
|
[14] |
Yamada H, Nakajima T, Domon H,et al. Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice[J]. J Periodontal Res, 2015, 50(4):500-508. DOI: 10.1111/jre.12232.
|
[15] |
Hu H, Tian M, Ding C,et al. The C/EBP homologous protein (CHOP)transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection[J]. Front Immunol, 2019, 9:3083. DOI: 10.3389/fimmu.2018.03083.
|
[16] |
Calfon M, Zeng H, Urano F,et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature, 2002, 415(6867):92-96. DOI: 10.1038/415092a.
|
[17] |
Estébanez B, de Paz JA, Cuevas MJ,et al. Endoplasmic reticulum unfolded protein response,aging and exercise:An update[J]. Front Physiol, 2018, 9:1744. DOI: 10.3389/fphys.2018.01744.
|
[18] |
Cao SS, Luo KL, Shi L. Endoplasmic reticulum stress interacts with inflammation in human diseases[J]. J Cell Physiol, 2016, 231(2):288-294. DOI: 10.1002/jcp.25098.
|
[19] |
Feng Y, Zhang R, Wang Y rong,et al. Inhibition of endoplasmic reticulum stress by 4-phenyl butyric acid presents therapeutic effects on periodontitis:Experimental studies in vitro and in rats[J]. Stem Cells Int, 2021:1-10. DOI: 10.1155/2021/6618943.
|
[20] |
Xue P, Li B, An Y,et al. Decreased MORF leads to prolonged endoplasmic reticulum stress in periodontitis-associated chronic inflammation[J]. Cell Death Differ, 2016, 23(11):1862-1872. DOI: 10.1038/cdd.2016.74.
|
[21] |
Bhattarai KR, Chaudhary M, Kim HR,et al. Endoplasmic reticulum(ER)stress response failure in diseases[J]. Trends Cell Biol, 2020, 30(9):672-675. DOI: 10.1016/j.tcb.2020.05.004.
|
[22] |
Wang K, Niu J, Kim H,et al. Osteoclast precursor differentiation by MCPIP via oxidative stress,endoplasmic reticulum stress,and autophagy[J]. J Mol Cell Biol, 2011, 3(6):360-368. DOI: 10.1093/jmcb/mjr021.
|
[23] |
Lee W, Jeong J, Lee E,et al. Tacrolimus regulates endoplasmic reticulum stress-mediated osteoclastogenesis and inflammation: In vitro and collagen-induced arthritis mouse model[J]. Cell Biol Int, 2018, 42(4):393-402. DOI: 10.1002/cbin.10861.
|
[24] |
Chen J, Chen J, Cheng Y,et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1):97. DOI: 10.1186/s13287-020-01610-0.
|
[25] |
|
[26] |
Garaicoa-Pazmino C, Fretwurst T, Squarize CH,et al. Characterization of macrophage polarization in periodontal disease[J]. J Clinic Periodontology, 2019, 46(8):830-839. DOI: 10.1111/jcpe.13156.
|
[27] |
Kourtzelis I, Li X, Mitroulis I,et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation[J]. Nat Immunol, 2019, 20(1):40-49. DOI: 10.1038/s41590-018-0249-1.
|
[28] |
Díaz-Bulnes P, Saiz ML, López-Larrea C,et al. Crosstalk between hypoxia and er stress response:A key regulator of macrophage polarization[J]. Front Immunol, 2020, 10:2951. DOI: 10.3389/fimmu.2019.02951.
|
[61] |
Kimura F, Miyazawa K, Hamamura K,et al. Suppression of alveolar bone resorption by salubrinal in a mouse model of periodontal disease[J]. Life Sciences, 2021, 284:119938. DOI: 10.1016/j.lfs.2021.119938.
|
[62] |
Sukprasansap M, Chanvorachote P, Tencomnao T. Cyanidin-3-glucoside activates Nrf2-antioxidant response element and protects against glutamate-induced oxidative and endoplasmic reticulum stress in HT22 hippocampal neuronal cells[J]. BMC Complement Med Ther, 2020, 20(1):46. DOI: 10.1186/s12906-020-2819-7.
|
[63] |
Tu HP, Kuo CY, Fu MMJ,et al. Cyanidin-3-O-glucoside downregulates ligation-activated endoplasmic reticulum stress and alleviates induced periodontal destruction in rats[J]. Arch Oral Biol, 2022, 134:105313. DOI: 10.1016/j.archoralbio.2021.105313.
|