[1] |
Zhang S, Sun K, Zheng R,et al. Cancer incidence and mortality in China,2015[J]. JNCC, 2021, 1(1):2-11. DOI: 10.1016/j.jncc.2020.12.001.
|
[2] |
Zheng R, Zhang S, Zeng H,et al. Cancer incidence and mortality in China,2016[J]. JNCC, 2022, 2(1):1-9. DOI: 10.1016/j.jncc.2022.02.002.
|
[3] |
|
[4] |
|
[5] |
Sung H, Ferlay J, Siegel RL,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660.
|
[6] |
|
[7] |
Johnson DE, Burtness B, Leemans CR,et al. Head and neck squamous cell carcinoma[J]. Nat Rev Dis Primers, 2020, 6(1):92. DOI: 10.1038/s41572-020-00224-3.
|
[8] |
Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536):576-582. DOI: 10.1038/nature14129.
|
[9] |
Curtin NJ, Szabo C. Poly(ADP-ribose)polymerase inhibition:Past,present and future[J]. Nat Rev Drug Discov, 2020, 19(10):711-736. DOI: 10.1038/s41573-020-0076-6.
|
[10] |
Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling[J]. Nat Rev Mol Cell Biol, 2017, 18(10):610-621. DOI: 10.1038/nrm.2017.53.
|
[11] |
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms[J]. Mol Cell, 2022, 82(12):2315-2334. DOI: 10.1016/j.molcel.2022.02.021.
|
[12] |
Bai P. Biology of poly(ADP-ribose)polymerases:The factotums of cell maintenance[J]. Mol Cell, 2015, 58(6):947-958. DOI: 10.1016/j.molcel.2015.01.034.
|
[13] |
Liu Q, Gheorghiu L, Drumm M,et al. PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53[J]. Oncogene, 2018, 37(21):2793-2805. DOI: 10.1038/s41388-018-0130-6.
|
[14] |
Marcar L, Bardhan K, Gheorghiu L,et al. Acquired resistance of EGFR-mutated lung cancer to tyrosine kinase inhibitor treatment promotes PARP inhibitor sensitivity[J]. Cell Rep, 2019, 27(12):3422-3432.e4. DOI: 10.1016/j.celrep.2019.05.058.
|
[15] |
Alemasova EE, Lavrik OI. Poly(ADP-ribosyl)ation by PARP1:Reaction mechanism and regulatory proteins[J]. Nucleic Acids Res, 2019, 47(8):3811-3827. DOI: 10.1093/nar/gkz120.
|
[16] |
Beck C, Robert I, Reina-San-Martin B,et al. Poly(ADP-ribose)polymerases in double-strand break repair:Focus on PARP1,PARP2 and PARP3[J]. Exp Cell Res, 2014, 329(1):18-25. DOI: 10.1016/j.yexcr.2014.07.003.
|
[17] |
Demétrio de Souza França P, Kossatz S, Brand C,et al. A phase I study of a PARP1-targeted topical fluorophore for the detection of oral cancer[J]. Eur J Nucl Med Mol Imaging, 2021, 48(11):3618-3630. DOI: 10.1007/s00259-021-05372-6.
|
[18] |
Kossatz S, Pirovano G, Demétrio De Souza França P,et al. Validation of the use of a fluorescent PARP1 inhibitor for the detection of oral,oropharyngeal and oesophageal epithelial cancers[J]. Nat Biomed Eng, 2020, 4(3):272-285. DOI: 10.1038/s41551-020-0526-9.
|
[19] |
Demétrio de Souza França P, Guru N, Roberts S,et al. Fluorescence-guided resection of tumors in mouse models of oral cancer[J]. Sci Rep, 2020, 10(1):11175. DOI: 10.1038/s41598-020-67958-8.
|
[20] |
Kossatz S, Brand C, Gutiontov S,et al. Detection and delineation of oral cancer with a PARP1 targeted optical imaging agent[J]. Sci Rep, 2016, 6:21371. DOI: 10.1038/srep21371.
|
[21] |
Schöder H, França PDS, Nakajima R,et al. Safety and feasibility of PARP1/2 imaging with 18F-PARPi in patients with head and neck cancer[J]. Clin Cancer Res, 2020, 26(13):3110-3116. DOI: 10.1158/1078-0432.CCR-19-3484.
|
[22] |
Zhang X, Wang Y, AG,et al. Pan-cancer analysis of PARP1 alterations as biomarkers in the prediction of immunotherapeutic effects and the association of its expression levels and immunotherapy signatures[J]. Front Immunol, 2021, 12:721030. DOI: 10.3389/fimmu.2021.721030.
|
[23] |
Nickoloff JA, Sharma N, Taylor L. Clustered DNA double-strand breaks:Biological effects and relevance to cancer radiotherapy [J]. Genes(Basel), 2020, 11(1):99. DOI: 10.3390/genes11010099.
|
[24] |
Grundy GJ, Parsons JL. Base excision repair and its implications to cancer therapy[J]. Essays Biochem, 2020, 64(5):831-843. DOI: 10.1042/EBC20200013.
|
[25] |
Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer[J]. Cell, 2017, 168(4):644-656. DOI: 10.1016/j.cell.2017.01.002.
|
[26] |
Lindahl T, Barnes DE. Repair of endogenous DNA damage[J]. Cold Spring Harb Symp Quant Biol, 2000, 65:127-133. DOI: 10.1101/sqb.2000.65.127.
|
[27] |
Liu Q, Lopez K, Murnane J,et al. Misrepair in context:TGFβ regulation of DNA repair[J]. Front Oncol, 2019, 9:799. DOI: 10.3389/fonc.2019.00799.
|
[28] |
Ye Z, Shi Y, Lees-Miller SP,et al. Function and molecular mechanism of the DNA damage response in immunity and cancer immunotherapy[J]. Front Immunol, 2021, 12:797880. DOI: 10.3389/fimmu.2021.797880.
|
[29] |
Dianov GL, Hübscher U. Mammalian base excision repair:The forgotten archangel[J]. Nucleic Acids Res, 2013, 41(6):3483-3490. DOI: 10.1093/nar/gkt076.
|
[30] |
Schärer OD. Nucleotide excision repair in eukaryotes[J]. Cold Spring Harb Perspect Biol, 2013, 5(10):a012609. DOI: 10.1101/cshperspect.a012609.
|
[31] |
Pines A, Vrouwe MG, Marteijn JA,et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1[J]. J Cell Biol, 2012, 199(2):235-249. DOI: 10.1083/jcb.201112132.
|
[32] |
Fisher AE, Hochegger H, Takeda S,et al. Poly(ADP-ribose)polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose)glycohydrolase[J]. Mol Cell Biol, 2007, 27(15):5597-5605. DOI: 10.1128/MCB.02248-06.
|
[33] |
|
[34] |
Hoch NC, Hanzlikova H, Rulten SL,et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia[J]. Nature, 2017, 541(7635):87-91. DOI: 10.1038/nature20790.
|
[35] |
Liu Q, Zuo N, Li X,et al. Novel insights into DNA damage repair defects in HPV-positive head and neck squamous cell carcinoma:From the molecular basis to therapeutic opportunities [J]. Genome Instability & Disease, 2023, 4(5):255-265. DOI: 10.1007/s42764-023-00109-1.
|
[36] |
Haince JF, Kozlov S, Dawson VL,et al. Ataxia telangiectasia mutated(ATM)signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents[J]. J Biol Chem, 2007, 282(22):16441-16453. DOI: 10.1074/jbc.M608406200.
|
[37] |
Zuo N, Ma L, Liu T,et al. Human papillomavirus associated XPF deficiency increases alternative end joining and cisplatin sensitivity in head and neck squamous cell carcinoma[J]. Oral Oncol, 2023, 140:106367. DOI: 10.1016/j.oraloncology.2023.106367.
|
[38] |
Setton J, Zinda M, Riaz N,et al. Synthetic lethality in cancer therapeutics:The next generation[J]. Cancer Discov, 2021, 11(7):1626-1635. DOI: 10.1158/2159-8290.Cd-20-1503.
|
[39] |
Slade D. PARP and PARG inhibitors in cancer treatment[J]. Genes Dev, 2020, 34(5/6):360-394. DOI: 10.1101/gad.334516.119.
|
[40] |
Shi Z, Chen B, Han X,et al. Genomic and molecular landscape of homologous recombination deficiency across multiple cancer types[J]. Sci Rep, 2023, 13(1):8899. DOI: 10.1038/s41598-023-35092-w.
|
[41] |
Chung CH, Guthrie VB, Masica DL,et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing[J]. Ann Oncol, 2015, 26(6):1216-1223. DOI: 10.1093/annonc/mdv109.
|
[42] |
Seiwert TY, Zuo Z, Keck MK,et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas[J]. Clin Cancer Res, 2015, 21(3):632-641. DOI: 10.1158/1078-0432.Ccr-13-3310.
|
[43] |
Hernandez AL, Wang Y, Somerset HL,et al. Inter- and intra-tumor heterogeneity of SMAD4 loss in head and neck squamous cell carcinomas[J]. Mol Carcinog, 2019, 58(5):666-673. DOI: 10.1002/mc.22958.
|
[44] |
Hernandez AL, Young CD, Bian L,et al. PARP inhibition enhances radiotherapy of smad4-deficient human head and neck squamous cell carcinomas in experimental models[J]. Clin Cancer Res, 2020, 26(12):3058-3070. DOI: 10.1158/1078-0432.Ccr-19-0514.
|
[45] |
Warnakulasuriya S, Kerr AR. Oral cancer screening:Past,present,and future[J]. J Dent Res, 2021, 100(12):1313-1320. DOI: 10.1177/00220345211014795.
|
[46] |
Puentes LN, Makvandi M, Mach RH. Molecular imaging:PARP-1 and beyond[J]. J Nucl Med, 2021, 62(6):765-770. DOI: 10.2967/jnumed.120.243287.
|
[47] |
Wang F, Gouttia OG, Wang L,et al. PARP1 upregulation in recurrent oral cancer and treatment resistance[J]. Front Cell Dev Biol, 2021, 9:804962. DOI: 10.3389/fcell.2021.804962.
|
[48] |
Liu Q, Ma L, Jones T,et al. Subjugation of TGFβ signaling by human papilloma virus in head and neck squamous cell carcinoma shifts DNA repair from homologous recombination to alternative end joining[J]. Clin Cancer Res, 2018, 24(23):6001-6014. DOI: 10.1158/1078-0432.CCR-18-1346.
|
[49] |
Wang X, Liu W, Li K,et al. PET imaging of PARP expression using 68Ga-labelled inhibitors[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9):2606-2620. DOI: 10.1007/s00259-023-06249-6.
|
[50] |
Ambur Sankaranarayanan R, Kossatz S, Weber W,et al. Advancements in PARP1 targeted nuclear imaging and theranostic probes[J]. J Clin Med, 2020, 9(7):2130. DOI: 10.3390/jcm9072130.
|
[51] |
|
[52] |
Demétrio de Souza França P, Roberts S, Kossatz S,et al. Fluorine-18 labeled poly(ADP-ribose)polymerase1 inhibitor as a potential alternative to 2-deoxy-2-[ 18F] fluoro-d-glucose positron emission tomography in oral cancer imaging[J]. Nucl Med Biol, 2020, 84-85:80-87. DOI: 10.1016/j.nucmedbio.2020.01.004.
|
[53] |
Moutafi M, Economopoulou P, Rimm D,et al. PARP inhibitors in head and neck cancer:Molecular mechanisms,preclinical and clinical data[J]. Oral Oncol, 2021, 117:105292. DOI: 10.1016/j.oraloncology.2021.105292.
|
[54] |
Moutafi M, Koliou GA, Papaxoinis G,et al. Phase Ⅱ window study of olaparib alone or with cisplatin or durvalumab in operable head and neck cancer[J]. Cancer Res Commun, 2023, 3(8):1514-1523. DOI: 10.1158/2767-9764.CRC-23-0051.
|
[55] |
Liu Q, Wang M, Kern AM,et al. Adapting a drug screening platform to discover associations of molecular targeted radiosensitizers with genomic biomarkers[J]. Mol Cancer Res, 2015, 13(4):713-720. DOI: 10.1158/1541-7786.MCR-14-0570.
|
[56] |
Zhou C, Fabbrizi MR, Hughes JR,et al. Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma[J]. Front Oncol, 2022, 12:940377. DOI: 10.3389/fonc.2022.940377.
|
[57] |
Wurster S, Hennes F, Parplys AC,et al. PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response[J]. Oncotarget, 2016, 7(9):9732-9741. DOI: 10.18632/oncotarget.6947.
|
[58] |
Verhagen CV, de Haan R, Hageman F,et al. Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose,the radiation dose and the integrity of the homologous recombination pathway of tumor cells[J]. Radiother Oncol, 2015, 116(3):358-365. DOI: 10.1016/j.radonc.2015.03.028.
|
[59] |
Wang L, Cao J, Wang X,et al. Proton and photon radiosensitization effects of niraparib,a PARP-1/-2 inhibitor,on human head and neck cancer cells[J]. Head Neck, 2020, 42(9):2244-2256. DOI: 10.1002/hed.26155.
|
[60] |
Frederick BA, Gupta R, Atilano-Roque A,et al. Combined EGFR1 and PARP1 inhibition enhances the effect of radiation in head and neck squamous cell carcinoma models[J]. Radiat Res, 2020, 194(5):519-531. DOI: 10.1667/RR15480.1.
|
[61] |
Zeng L, Boggs DH, Xing C,et al. Combining PARP and DNA-PK inhibitors with irradiation inhibits HPV-negative head and neck cancer squamous carcinoma growth[J]. Front Genet, 2020, 11:1036. DOI: 10.3389/fgene.2020.01036.
|
[62] |
Karam SD, Reddy K, Blatchford PJ,et al. Final report of a phase I trial of olaparib with cetuximab and radiation for heavy smoker patients with locally advanced head and neck cancer[J]. Clin Cancer Res, 2018, 24(20):4949-4959. DOI: 10.1158/1078-0432.Ccr-18-0467.
|
[63] |
Navran A, Al-Mamgani A, Elzinga H,et al. Phase I feasibility study of Olaparib in combination with loco-regional radiotherapy in head and neck squamous cell carcinoma[J]. Clin Transl Radiat Oncol, 2024, 44:100698. DOI: 10.1016/j.ctro.2023.100698.
|
[64] |
de Haan R, van Werkhoven E, van den Heuvel MM,et al. Study protocols of three parallel phase 1 trials combining radical radiotherapy with the PARP inhibitor olaparib[J]. BMC Cancer, 2019, 19(1):901. DOI: 10.1186/s12885-019-6121-3.
|
[65] |
Jelinek MJ, Foster NR, Zoroufy AJ,et al. A phase I trial adding poly(ADP-ribose)polymerase inhibitor veliparib to induction carboplatin-paclitaxel in patients with head and neck squamous cell carcinoma:Alliance A091101[J]. Oral Oncol, 2021, 114:105171. DOI: 10.1016/j.oraloncology.2020.105171.
|
[66] |
Yin ZX, Hang W, Liu G,et al. PARP-1 inhibitors sensitize HNSCC cells to APR-246 by inactivation of thioredoxin reductase 1(TrxR1)and promotion of ROS accumulation[J]. Oncotarget, 2018, 9(2):1885-1897. DOI: 10.18632/oncotarget.21277.
|
[67] |
Murai J, Huang SY, Das BB,et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors[J]. Cancer Res, 2012, 72(21):5588-5599. DOI: 10.1158/0008-5472.CAN-12-2753.
|
[68] |
Spiegel JO, van Houten B, Durrant JD. PARP1:Structural insights and pharmacological targets for inhibition[J]. DNA Repair(Amst), 2021, 103:103125. DOI: 10.1016/j.dnarep.2021.103125.
|
[69] |
Ang KK, Harris J, Wheeler R,et al. Human papillomavirus and survival of patients with oropharyngeal cancer[J]. N Engl J Med, 2010, 363(1):24-35. DOI: 10.1056/NEJMoa0912217.
|
[70] |
Liu T, Ma L, Song L,et al. CENPM upregulation by E5 oncoprotein of human papillomavirus promotes radiosensitivity in head and neck squamous cell carcinoma[J]. Oral Oncol, 2022, 129:105858. DOI: 10.1016/j.oraloncology.2022.105858.
|
[71] |
Lassen P, Eriksen JG, Hamilton-Dutoit S,et al. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck[J]. J Clin Oncol, 2009, 27(12):1992-1998. DOI: 10.1200/jco.2008.20.2853.
|
[72] |
Huang Z, Chen Y, Chen R,et al. HPV enhances HNSCC chemosensitization by inhibiting SERPINB3 expression to disrupt the fanconi anemia pathway[J]. Adv Sci(Weinh), 2022, 10(1):e2202437. DOI: 10.1002/advs.202202437.
|
[73] |
Citro S, Miccolo C, Medda A,et al. HPV-mediated regulation of SMAD4 modulates the DNA damage response in head and neck cancer[J]. J Exp Clin Cancer Res, 2022, 41(1):59. DOI: 10.1186/s13046-022-02258-9.
|
[74] |
Kocher S, Zech HB, Krug L,et al. A lack of effectiveness in the ATM-orchestrated DNA damage response contributes to the DNA repair defect of HPV-positive head and neck cancer cells[J]. Front Oncol, 2022, 12:765968. DOI: 10.3389/fonc.2022.765968.
|
[75] |
Zech HB, Berger J, Mansour WY,et al. Patient derived ex vivo tissue slice cultures demonstrate a profound DNA double-strand break repair defect in HPV-positive oropharyngeal head and neck cancer[J]. Radiother Oncol, 2022, 168:138-146. DOI: 10.1016/j.radonc.2022.01.017.
|
[76] |
Hintelmann K, Berenz T, Kriegs M,et al. Dual inhibition of PARP and the intra-S/G2 cell cycle checkpoints results in highly effective radiosensitization of HPV-positive HNSCC cells[J]. Front Oncol, 2021, 11:683688. DOI: 10.3389/fonc.2021.683688.
|
[77] |
Weaver AN, Cooper TS, Rodriguez M,et al. DNA double strand break repair defect and sensitivity to poly ADP-ribose polymerase (PARP)inhibition in human papillomavirus 16-positive head and neck squamous cell carcinoma[J]. Oncotarget, 2015, 6(29):26995-27007. DOI: 10.18632/oncotarget.4863.
|
[78] |
Lombardi AJ, Hoskins EE, Foglesong GD,et al. Acquisition of relative interstrand crosslinker resistance and PARP inhibitor sensitivity in fanconi anemia head and neck cancers[J]. Clin Cancer Res, 2015, 21(8):1962-1972. DOI: 10.1158/1078-0432.CCR-14-2616.
|
[79] |
Güster JD, Weissleder SV, Busch CJ,et al. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines[J]. Radiother Oncol, 2014, 113(3):345-351. DOI: 10.1016/j.radonc.2014.10.011.
|