[1] |
Liu Y, Guo L, Li X,et al. Challenges and tissue engineering strategies of periodontal-guided tissue regeneration[J]. Tissue Eng Part C Methods, 2022, 28(8):405-419. DOI: 10.1089/ten.TEC.2022.0106.
|
[2] |
Aimaijiang M, Liu Y, Zhang Z,et al. LIPUS as a potential strategy for periodontitis treatment:A review of the mechanisms[J]. Front Bioeng Biotechnol, 2023, 11:1018012. DOI: 10.3389/fbioe.2023.1018012.
|
[3] |
de Ry SP, Pagnamenta M, Ramseier CA,et al. Five-year results following regenerative periodontal surgery with an enamel matrix derivative in patients with different smoking status[J]. Quintessence Int, 2022, 53(10):832-838. DOI: 10.3290/j.qi.b3418233.
|
[4] |
Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration:A biomaterial perspective[J]. Bioact Mater, 2020, 5(2):297-308. DOI: 10.1016/j.bioactmat.2020.02.012.
|
[5] |
Vaquette C, Pilipchuk SP, Bartold PM,et al. Tissue engineered constructs for periodontal regeneration:current status and future perspectives[J]. Adv Healthc Mater, 2018, 7(21):e1800457. DOI: 10.1002/adhm.201800457.
|
[6] |
Pjetursson BE, Heimisdottir K. Dental implants—Are they better than natural teeth?[J]. Eur J Oral Sci, 2018, 126(Suppl 1):81-87. DOI: 10.1111/eos.12543.
|
[7] |
Testori T, Weinstein T, Scutellà F,et al. Implant placement in the esthetic area:Criteria for positioning single and multiple implants[J]. Periodontol 2000, 2018, 77(1):176-196. DOI: 10.1111/prd.12211.
|
[8] |
Tettamanti L, Andrisani C, Bassi MA,et al. Post extractive implant:Evaluation of the critical aspects[J]. Oral Implantol (Rome), 2017, 10(2):119-128. DOI: 10.11138/orl/2017.10.2.119.
|
[9] |
Hämmerle CHF, Tarnow D. The etiology of hard- and soft-tissue deficiencies at dental implants:A narrative review[J]. J Periodontol, 2018, 89(Suppl 1):S291-S303. DOI: 10.1002/JPER.16-0810.
|
[10] |
Esposito M, Grusovin MG, Coulthard P,et al. The efficacy of various bone augmentation procedures for dental implants:A Cochrane systematic review of randomized controlled clinical trials[J]. Int J Oral Maxillofac Implants, 2006, 21(5):696-710. DOI: 10.1016/j.ijom.2006.03.021.
|
[11] |
Misch CM. The future of bone augmentation[J]. Int J Oral Implantol(Berl),2022,15(2):103-104.
|
[12] |
Cha HS, Kim JW, Hwang JH,et al. Frequency of bone graft in implant surgery[J]. Maxillofac Plast Reconstr Surg, 2016, 38(1):19-28. DOI: 10.1186/s40902-016-0064-2.
|
[13] |
Barone Antonio,Nannmark Ulf.引导骨再生策略与方法[M].张健,王艳颖,韩静,译.沈阳:辽宁科学技术出版社,2021:5-11.
|
[14] |
林野.口腔种植学[M].北京:北京大学医学出版社,2014:79-80.
|
[15] |
|
[16] |
Deng R, Xie Y, Chan U,et al. Biomaterials and biotechnology for periodontal tissue regeneration:Recent advances and perspectives[J]. J Dent Res Dent Clin Dent Prospects, 2022, 16(1):1-10. DOI: 10.34172/joddd.2022.001.
|
[17] |
Bartold PM, Gronthos S, Ivanovski S,et al. Tissue engineered periodontal products[J]. J Periodontal Res, 2016, 51(1):1-15. DOI: 10.1111/jre.12275.
|
[18] |
Ding G, Liu Y, Wang W,et al. Allogeneic perio-dontal ligament stem cell therapy for periodontitis in swine[J]. Stem Cells, 2010, 28(10):1829-1838. DOI: 10.1002/stem.512.
|
[19] |
Liu O, Xu J, Ding G,et al. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1[J]. Stem Cells, 2013, 31(7):1371-1382. DOI: 10.1002/stem.1387.
|
[20] |
Wei W, An Y, An Y,et al. Activation of autophagy in periodontal ligament mesenchymal stem cells promotes angiogenesis in periodontitis[J]. J Periodontol, 2018, 89(6):718-727. DOI: 10.1002/JPER.17-0341.
|
[21] |
Ulmer FL,Winkel A,Kohorst P,et al. Stem cells--prospects in dentistry[J]. Schweiz Monatsschr Zahnmed,2010,120(10):860-872.
|
[22] |
Daghrery A, Bottino MC. Advanced biomaterials for periodontal tissue regeneration[J]. Genesis, 2022, 60(8-9):e23501. DOI: 10.1002/dvg.23501.
|
[23] |
Bousnaki M, Beketova A, Kontonasaki E. A review of in vivo and clinical studies applying scaffolds and cell sheet technology for periodontal ligament regeneration[J]. Biomolecules, 2022, 12(3):435. DOI: 10.3390/biom12030435.
|
[24] |
Tsumanuma Y, Iwata T, Washio K,et al. Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model[J]. Biomaterials, 2011, 32(25):5819-5825. DOI: 10.1016/j.biomaterials.2011.04.071.
|
[25] |
康坤龙,王新涛.生物支架材料促进骨髓间充质干细胞成骨分化的研究热点[J].中国组织工程研究,2022,26(4):597-603.
|
[26] |
Boden SD, Martin GJ Jr, Morone M,et al. The use of coralline hydroxyapatite with bone marrow,autogenous bone graft,or osteoinductive bone protein extract for posterolateral lumbar spine fusion[J]. Spine(Phila Pa 1976), 1999, 24(4):320-327. DOI: 10.1097/00007632-199902150-00003.
|
[27] |
|
[28] |
Vallet-Regí M, Lozano D, González B,et al. Biomaterials against bone infection[J]. Adv Healthc Mater, 2020, 9(13):e2000310. DOI: 10.1002/adhm.202000310.
|
[29] |
Ahrari F, Eslami N, Rajabi O,et al. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes[J]. Dent Res J(Isfahan), 2015, 12(1):44-49. DOI: 10.4103/1735-3327.150330.
|
[30] |
Chang JH, Su J, Zhang WY. Process study on surface modification of coral hydroxyapatite[J]. Am J Clin Exp Med, 2021, 9(5):157-162. DOI: 10.11648/J.AJCEM.20210905.15.
|
[31] |
Feng Y, Zhu S, Mei D,et al. Application of 3D printing technology in bone tissue engineering:A review[J]. Curr Drug Deliv, 2021, 18(7):847-861. DOI: 10.2174/1567201817999201113100322.
|
[32] |
Distefano F, Pasta S, Epasto G. Titanium lattice structures produced via additive manufacturing for a bone scaffold:A review[J]. J Funct Biomater, 2023, 14(3):125. DOI: 10.3390/jfb14030125.
|
[33] |
Gögele C, Müller S, Belov S,et al. Biodegradable poly(D-L-lactide-co-glycolide)(PLGA)-infiltrated bioactive glass (CAR12N)scaffolds maintain mesenchymal stem cell chondrogenesis for cartilage tissue engineering[J]. Cells, 2022, 11(9):1577. DOI: 10.3390/cells11091577.
|
[34] |
Rocha CV, Gonçalves V, da Silva MC,et al. PLGA-based composites for various biomedical applications[J]. Int J Mol Sci, 2022, 23(4):2034. DOI: 10.3390/ijms23042034.
|
[35] |
Lai Y, Li Y, Cao H,et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials, 2019, 197:207-219. DOI: 10.1016/j.biomaterials.2019.01.013.
|
[36] |
Wei J, Yan Y, Gao J,et al. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration[J]. Biomater Adv, 2022, 133:112618. DOI: 10.1016/j.msec.2021.112618.
|
[37] |
Babilotte J, Martin B, Guduric V,et al. Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2021, 118:111334. DOI: 10.1016/j.msec.2020.111334.
|
[38] |
Hatt LP, Wirth S, Ristaniemi A,et al. Micro-porous PLGA/β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes[J]. Regen Biomater, 2023, 10:rbad084. DOI: 10.1093/rb/rbad084.
|
[39] |
Li C, Sun F, Tian J,et al. Continuously released Zn 2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties[J]. Bioact Mater, 2022, 24:361-375. DOI: 10.1016/j.bioactmat.2022.12.015.
|
[40] |
Baniasadi H, Kimiaei E, Polez RT,et al. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks[J]. Int J Biol Macromol, 2022, 209(Pt B):2020-2031. DOI: 10.1016/j.ijbiomac.2022.04.183.
|
[41] |
Hu X, Man Y, Li W,et al. 3D bio-printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds[J]. Polymers(Basel), 2019, 11(10):1601. DOI: 10.3390/polym11101601.
|
[42] |
Smith PT, Basu A, Saha A,et al. Chemical modification and printability of shear-thinning hydrogel inks for direct-write 3D printing[J]. Polymer, 2018, 12(125):42-50. DOI: 10.1016/j.polymer.2018.01.070.
|
[43] |
Shahzad A, Lazoglu I. Direct ink writing(DIW)of structural and functional ceramics:Recent achievements and future challenges[J]. Compos Part B:Eng, 2021, 15(225):109249. DOI: 10.1016/j.compositesb.2021.109249.
|
[44] |
Ravichandran D, Xu W, Kakarla M,et al. Multiphase direct ink writing(MDIW)for multilayered polymer/nanoparticle composites[J]. Addit Manuf, 2021, 47:102322. DOI: 10.1016/j.addma.2021.102322.
|
[45] |
Prasopthum A, Cooper M, Shakesheff KM,et al. Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells[J]. ACS Appl Mater Interfaces, 2019, 11(21):18896-18906. DOI: 10.1021/acsami.9b01472.
|
[46] |
Zou F, Jiang J, Lv F,et al. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair[J]. J Nanobiotechnology, 2020, 18(1):39. DOI: 10.1186/s12951-020-00594-6.
|
[47] |
Fu S, Du X, Zhu M,et al. 3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors[J]. Biomed Mater, 2019, 14(6):065011. DOI: 10.1088/1748-605X/ab4166.
|
[48] |
Luo Y, Chen B, Zhang X,et al. 3D printed concentrated alginate/GelMA hollow-fibers-packed scaffolds with nano apatite coatings for bone tissue engineering[J]. Int J Biol Macromol, 2022, 202:366-374. DOI: 10.1016/j.ijbiomac.2022.01.096.
|
[49] |
Rau DA, Williams CB, Bortner MJ. Rheology and printability:A survey of critical relationships for direct ink write materials design[J]. Prog Mater Sci, 2023, 140:101188. DOI: 10.1016/j.pmatsci.2023.101188.
|
[50] |
Rau DA,Bortner MJ,Williams CB. A rheology roadmap for evaluating the printability of material extrusion inks[J]. Additive Manufacturing,2023,75:103745.
|
[51] |
Suntornnond R, Tan EYS, An J,et al. A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks[J]. Materials(Basel), 2016, 9(9):756. DOI: 10.3390/ma9090756.
|
[52] |
Collins MN, Guang R, Young K,et al. Scaffold fabrication technologies and structure/function properties in bone tissue engineering[J]. Adv Funct Mater, 2021, 31(21):2010609. DOI: 10.1002/adfm.202010609.
|
[53] |
Qu H, Fu H, Han Z,et al. Biomaterials for bone tissue engineering scaffolds:A review[J]. RSC Adv, 2019, 9(45):26252-26262. DOI: 10.1039/c9ra05214c.
|
[54] |
Kodama J, Harumningtyas AA, Ito T,et al. Amine modification of calcium phosphate by low-pressure plasma for bone regeneration[J]. Sci Rep, 2021, 11(1):17870. DOI: 10.1038/s41598-021-97460-8.
|
[55] |
Yu J, Zhang WY, Li Y,et al. Synthesis,characterization,antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial[J]. Biomed Mater, 2014, 10(1):015001. DOI: 10.1088/1748-6041/10/1/015001.
|
[56] |
Jin J, Liu W, Zhang WY,et al. Nano-ZnO/ZnO-HAPw prepared via sol-gel method and antibacterial activities of inorganic agents on six bacteria associated with oral infections[J]. J Nanopart Res, 2014, 16:2658. DOI: 10.1007/s11051-014-2658-x.
|
[57] |
刘娟,孟波,赵华,等.人牙周膜细胞不同分离培养方法的比较研究[J].广东牙病防治,2011,19(12):631-634.
|
[58] |
|
[59] |
Subba TA, Varma S, Thomas B,et al. Comparison of cellular and differentiation characteristics of mesenchymal stem cells derived from human gingiva and periodontal ligament[J]. J Int Soc Prev Community Dent, 2022, 12(2):235-244. DOI: 10.4103/jispcd.JISPCD_259_21.
|
[60] |
Couto de Carvalho LA, Tosta Dos Santos SL, Sacramento LV,et al. Mesenchymal stem cell markers in periodontal tissues and periapical lesions[J]. Acta Histochem, 2020, 122(8):151636. DOI: 10.1016/j.acthis.2020.151636.
|