[1] |
|
[2] |
Girndt M. Diagnosis and treatment of chronic kidney disease[J]. Internist(Berl), 2017, 58(3):243-256. DOI: 10.1007/s00108-017-0195-2.
|
[3] |
Verhelst D. Characteristics and epidemiology of chronic kidney disease[J]. Soins, 2018, 63(826):14-16. DOI: 10.1016/j.soin.2018.04.004.
|
[4] |
Kalhan AC, Wong ML, Allen F,et al. Periodontal disease and systemic health:An update for medical practitioners[J]. Ann Acad Med Singap, 2022, 51(9):567-574. DOI: 10.47102/annals-acadmedsg.2021503.
|
[5] |
Teles F, Collman RG, Mominkhan D,et al. Viruses,periodontitis,and comorbidities[J]. Periodontol 2000, 2022, 89(1):190-206. DOI: 10.1111/prd.12435.
|
[6] |
Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management:A review[J]. Jama, 2019, 322(13):1294-1304. DOI: 10.1001/jama.2019.14745.
|
[7] |
Kshirsagar AV, Moss KL, Elter JR,et al. Periodontal disease is associated with renal insufficiency in the Atherosclerosis Risk In Communities(ARIC)study[J]. Am J Kidney Dis, 2005, 45(4):650-657. DOI: 10.1053/j.ajkd.2004.12.009.
|
[8] |
Tsai KZ, Liu PY, Wu TJ,et al. Localized periodontitis and kidney function for the risk of proteinuria in young adults in the CHIEF oral health study[J]. Sci Rep, 2022, 12(1):19006. DOI: 10.1038/s41598-022-23843-0.
|
[9] |
Graziani F, Cei S, la Ferla F,et al. Effects of non-surgical periodontal therapy on the glomerular filtration rate of the kidney:An exploratory trial[J]. J Clin Periodontol, 2010, 37(7):638-643. DOI: 10.1111/j.1600-051X.2010.01578.x.
|
[10] |
Sawa Y, Takata S, Hatakeyama Y,et al. Expression of toll-like receptor 2 in glomerular endothelial cells and promotion of diabetic nephropathy by Porphyromonas gingivalis lipopolysaccharide [J]. PLoS One, 2014, 9(5):e97165. DOI: 10.1371/journal.pone.0097165.
|
[11] |
|
[12] |
|
[13] |
Lunar Silva I, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence[J]. J Mol Biol, 2021, 433(7):166836. DOI: 10.1016/j.jmb.2021.166836.
|
[14] |
Schenkein HA, Papapanou PN, Genco R,et al. Mechanisms underlying the association between periodontitis and atherosclerotic disease[J]. Periodontol 2000, 2020, 83(1):90-106. DOI: 10.1111/prd.12304.
|
[15] |
Lee JY, Miller DP, Wu L,et al. Maturation of the Mfa1 fimbriae in the oral pathogen Porphyromonas gingivalis[J]. Front Cell Infect Microbiol, 2018, 8:137. DOI: 10.3389/fcimb.2018.00137.
|
[16] |
Katz J, Sambandam V, Wu JH,et al. Characterization of Porphyromonas gingivalis-induced degradation of epithelial cell junctional complexes[J]. Infect Immun, 2000, 68(3):1441-1449. DOI: 10.1128/IAI.68.3.1441-1449.2000.
|
[17] |
Hasegawa Y, Nagano K. Porphyromonas gingivalis FimA and Mfa1 fimbriae:Current insights on localization,function,biogenesis,and genotype[J]. Jpn Dent Sci Rev, 2021, 57:190-200. DOI: 10.1016/j.jdsr.2021.09.003.
|
[18] |
Nakagawa I, Amano A, Inaba H,et al. Inhibitory effects of Porphyromonas gingivalis fimbriae on interactions between extracellular matrix proteins and cellular integrins[J]. Microbes Infect, 2005, 7(2):157-163. DOI: 10.1016/j.micinf.2004.10.007.
|
[19] |
Mo W, Wu J, Qiu Q,et al. Platelet-rich plasma inhibits osteoblast apoptosis and actin cytoskeleton disruption induced by gingipains through upregulating integrin β1[J]. Cell Biol Int, 2020, 44(10):2120-2130. DOI: 10.1002/cbin.11420.
|
[20] |
Zhang W, Ju J, Rigney T,et al. Integrin α5β1-fimbriae binding and actin rearrangement are essential for Porphyromonas gingivalis invasion of osteoblasts and subsequent activation of the JNK pathway[J]. BMC Microbiol, 2013, 13:5. DOI: 10.1186/1471-2180-13-5.
|
[21] |
Zhang D, Zheng H, Zhao J,et al. Porphorymonas gingivalis induces intracellular adhesion molecule-1 expression in endothelial cells through the nuclear factor-kappaB pathway,but not through the p38 MAPK pathway[J]. J Periodontal Res, 2011, 46(1):31-38. DOI: 10.1111/j.1600-0765.2010.01305.x.
|
[22] |
|
[23] |
Takayanagi Y, Kikuchi T, Hasegawa Y,et al. Porphyromonas gingivalis Mfa1 induces chemokine and cell adhesion molecules in mouse gingival fibroblasts via Toll-like receptors[J]. J Clin Med, 2020, 9(12):4004. DOI: 10.3390/jcm9124004.
|
[24] |
Kadowaki T. Enzymatic characteristics and activities of gingipains from Porphyromonas gingivalis[J]. Methods Mol Biol, 2021, 2210:97-112. DOI: 10.1007/978-1-0716-0939-2_10.
|
[25] |
Nonaka S, Kadowaki T, Nakanishi H. Secreted gingipains from Porphyromonas gingivalis increase permeability in human cerebral microvascular endothelial cells through intracellular degradation of tight junction proteins[J]. Neurochem Int, 2022, 154:105282. DOI: 10.1016/j.neuint.2022.105282.
|
[26] |
|
[27] |
Chopra A, Sivaraman K. An update on possible pathogenic mechanisms of periodontal pathogens on renal dysfunction[J]. Crit Rev Microbiol, 2019, 45(5-6):514-538. DOI: 10.1080/1040841X.2018.1553847.
|
[28] |
Duan T, Du Y, Xing C,et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13:812774. DOI: 10.3389/fimmu.2022.812774.
|
[29] |
Wang L, Yang JW, Lin LT,et al. Acupuncture attenuates inflammation in microglia of vascular dementia rats by inhibiting miR-93-mediated TLR4/MyD88/NF-κB signaling pathway[J]. Oxid Med Cell Longev, 2020:8253904. DOI: 10.1155/2020/8253904.
|
[30] |
Deng S, Jepsen S, Dommisch H,et al. Cysteine proteases from Porphyromonas gingivalis and TLR ligands synergistically induce the synthesis of the cytokine IL-8 in human artery endothelial cells[J]. Arch Oral Biol, 2011, 56(12):1583-1591. DOI: 10.1016/j.archoralbio.2011.06.018.
|
[31] |
|
[32] |
|
[33] |
Jia L, Han N, Du J,et al. Pathogenesis of important virulence factors of Porphyromonas gingivalis via Toll-like receptors[J]. Front Cell Infect Microbiol, 2019, 9:262. DOI: 10.3389/fcimb.2019.00262.
|
[34] |
|
[35] |
Wen Y, Lu X, Ren J,et al. KLF4 in macrophages attenuates TNFα-mediated kidney injury and fibrosis[J]. J Am Soc Nephrol, 2019, 30(10):1925-1938. DOI: 10.1681/ASN.2019020111.
|
[36] |
张雅飞,朱杰夫,宋志霞.巨噬细胞在急性肾损伤向慢性肾脏病转化中的作用[J].肾脏病与透析肾移植杂志,2022,31(1):68-72.
|
[37] |
Wen Y, Crowley SD. The varying roles of macrophages in kidney injury and repair[J]. Curr Opin Nephrol Hypertens, 2020, 29(3):286-292. DOI: 10.1097/MNH.0000000000000595.
|
[38] |
Huang Y, Tian C, Li Q,et al. TET1 knockdown inhibits Porphyromonas gingivalis LPS/IFN-γ-induced M1 macrophage polarization through the NF-κB pathway in THP-1 cells[J]. Int J Mol Sci, 2019, 20(8):2023. DOI: 10.3390/ijms20082023.
|
[39] |
Nylund KM, Ruokonen H, Sorsa T,et al. Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease[J]. J Periodontol, 2018, 89(1):117-129. DOI: 10.1902/jop.2017.170218.
|
[40] |
Yoshida K, Yoshida K, Fujiwara N,et al. Extracellular vesicles of P.gingivalis-infected macrophages induce lung injury[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(11):166236. DOI: 10.1016/j.bbadis.2021.166236.
|
[41] |
Huang MZ, Li JY. Physiological regulation of reactive oxygen species in organisms based on their physicochemical properties [J]. Acta Physiol(Oxf), 2020, 228(1):e13351. DOI: 10.1111/apha.13351.
|
[42] |
Storr SJ, Woolston CM, Zhang Y,et al. Redox environment,free radical,and oxidative DNA damage[J]. Antioxid Redox Signal, 2013, 18(18):2399-2408. DOI: 10.1089/ars.2012.4920.
|
[43] |
Ishimoto Y, Tanaka T, Yoshida Y,et al. Physiological and pathophysiological role of reactive oxygen species and reactive nitrogen species in the kidney[J]. Clin Exp Pharmacol Physiol, 2018, 45(11):1097-1105. DOI: 10.1111/1440-1681.13018.
|
[44] |
Tomofuji T, Ekuni D, Irie K,et al. Relationships between periodontal inflammation,lipid peroxide and oxidative damage of multiple organs in rats[J]. Biomed Res, 2011, 32(5):343-349. DOI: 10.2220/biomedres.32.343.
|
[45] |
França LFC, Vasconcelos ACCG, da Silva FRP,et al. Periodontitis changes renal structures by oxidative stress and lipid peroxidation[J]. J Clin Periodontol, 2017, 44(6):568-576. DOI: 10.1111/jcpe.12729.
|
[46] |
Wang H, Zhou H, Duan X,et al. Porphyromonas gingivalis-induced reactive oxygen species activate JAK2 and regulate production of inflammatory cytokines through c-Jun[J]. Infect Immun, 2014, 82(10):4118-4126. DOI: 10.1128/IAI.02000-14.
|