[1] |
Novoselov KS, Geim AK, Morozov SV,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
|
[2] |
Singh V, Joung D, Zhai L,et al. Graphene based materials:Past,present and future[J]. Prog Mater Sci,2011,56(8):1178-1271.
|
[3] |
Lee C, Wei X, Kysar JW,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388.
|
[4] |
Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys Rev Lett,2000,84(20):4613-4616.
|
[5] |
Freitag M, Steiner M, Martin Y,et al. Energy dissipation in graphene field-effect transistors[J]. Nano Lett,2009,9(5):1883-1888.
|
[6] |
Kim S, Ihm J, Choi HJ,et al. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide[J]. Phys Rev Lett,2008,100(17):176802.
|
[7] |
Nair RR, Blake P, Grigorenko AN,et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308.
|
[8] |
Zhang L, Zhang F, Yang X,et al. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors[J]. Sci Rep,2013,3:1408.
|
[9] |
Geim AK, Novoselov KS. The rise of graphene[J]. Nat Mater,2007,6(3):183-191.
|
[10] |
Zhang Y, Ali SF, Dervishi E,et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano,2010,4(6):3181-3186.
|
[11] |
Rosa V, Della BA, Cavalcanti BN,et al. Tissue engineering:from research to dental clinics[J]. Dent Mater,2012,28(4):341-348.
|
[12] |
Lee WC, Lim CH, Shi H,et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano,2011,5(9):7334-7341.
|
[13] |
Elkhenany H, Amelse L, Lafont A,et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells:potential for bone tissue engineering[J]. J Appl Toxicol,2015,35(4):367-374.
|
[14] |
Sasidharan A, Panchakarla LS, Chandran P,et al. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene[J]. Nanoscale,2011,3(6):2461-2464.
|
[15] |
Yang K, Wan J, Zhang S,et al. In vivo pharmacokinetics,long-term biodistribution,and toxicology of PEGylated graphene in mice[J]. ACS Nano,2011,5(1):516-522.
|
[16] |
Hu W, Peng C, Luo W,et al. Graphene-based antibacterial paper[J]. ACS Nano,2010,4(7):4317-4323.
|
[17] |
Liu S, Zeng TH, Hofmann M,et al. Antibacterial activity of graphite,graphite oxide,graphene oxide,and reduced graphene oxide:membrane and oxidative stress[J]. ACS Nano,2011,5(9):6971-6980.
|
[18] |
Tu Y, Lv M, Xiu P,et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat Nanotechnol,2013,8(12):968.
|
[19] |
Kulshrestha S, Khan S, Meena R,et al. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans[J]. Biofouling,2014,30(10):1281-1294.
|
[20] |
Mombelli A. Microbiology and antimicrobial therapy of peri-implantitis[J]. Periodontol 2000,2002(28):177-189.
|
[21] |
Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants:a review of the literature[J]. Clin Oral Implants Res,2002,13(1):1-19.
|
[22] |
Branemark PI. Osseointegration and its experimental background[J]. J Prosthet Dent,1983,50(3):399-410.
|
[23] |
Nayak TR, Andersen H, Makam VS,et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells[J]. ACS Nano,2011,5(6):4670-4678.
|
[24] |
Rosa V, Zhang Z, Grande RH,et al. Dental pulp tissue engineering in full-length human root canals[J]. J Dent Res,2013,92(11):970-975.
|
[25] |
Qi W, Yuan W, Yan J,et al. Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films[J]. J Mater Chem B,2014,2(33):5461-5467.
|
[26] |
Kalbacova M, Broz A, Kong J,et al. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells[J]. Carbon,2010,48(15):4323-4329.
|
[27] |
Alzhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells[J]. Carbon,2013(59):200-211.
|
[28] |
Ryoo HM, Hoffmann HM, Beumer T,et al. Stage-specific expression of Dlx-5 during osteoblast differentiation:Involvement in regulation of osteocalcin gene expression[J]. Mol Endocrinol,1997,11(11):1681-1694.
|
[29] |
Kim J, Kim Y, Kim Y,et al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells[J]. J Mater Chem B,2013,1(7):933-938.
|
[30] |
Xie Y, Li H, Zhang C,et al. Graphene-reinforced calcium silicate coatings for load-bearing implants[J]. Biomed Mater,2014,9(2):025009.
|
[31] |
Tatavarty R, Ding H, Lu G,et al. Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide-calcium phosphate nanocomposites[J]. Chem Commun,2014,50(62):8484-8487.
|
[32] |
Gao C, Liu T, Shuai C,et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold:mechanical and biological performance[J]. Sci Rep,2014,4:4712.
|
[33] |
Porwal H, Grasso S, Cordero-Arias L,et al. Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites[J]. J Mater Sci Mater Med,2014,25(6):1403-1413.
|
[34] |
Loh KP, Bao Q, Ang PK,et al. The chemistry of graphene[J]. J Mater Chem,2010,20(12):2277-2289.
|
[35] |
Pei S, Cheng H. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210-3228.
|
[36] |
Jiayu L, Yu-Shi H, Chi C,et al. Self-supporting graphene hydrogel film as an experimental platform to evaluate the potential of graphene for bone regeneration[J]. Adv Funct Mater,2013,23(28):3494-3502.
|
[37] |
Kang SW, La WG, Kang JM,et al. Bone morphogenetic protein-2 enhances bone regeneration mediated by transplantation of osteogenically undifferentiated bone marrow-derived mesenchymal stem cells[J]. Biotechnol Lett,2008,30(7):1163-1168.
|
[38] |
Depan D, Girase B, Shah JS,et al. Structure-process-property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds[J]. Acta Biomater,2011,7(9):3432-3445.
|
[39] |
Li M, Liu Q, Jia Z,et al. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications[J]. Carbon,2014,67:185-197.
|
[40] |
La WG, Park S, Yoon HH,et al. Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small,2013,9(23):4051-4060.
|
[41] |
La WG, Kang SW, Yang HS,et al. The efficacy of bone morphogenetic protein-2 depends on its mode of delivery[J]. Artif Organs,2010,34(12):1150-1153.
|
[42] |
Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws:a 5-year follow-up report[J]. Int J Oral Maxillofac Implants,1993,8(6):635-640.
|
[43] |
Kallus T, Bessing C. Loose gold screws frequently occur in full-arch fixed prostheses supported by osseointegrated implants after 5 years.[J]. Int J Oral Maxillofac Implants,1994,9(2):169-178.
|
[44] |
Kim KH, Choi MY, Kishi T. Fracture analysis of cast pure Ti and Ti-6Al-4V alloy for dental use[J]. Biomed Mater Eng,1997,7(4):271-276.
|
[45] |
Dawson JI, Oreffo ROC. Bridging the regeneration gap:Stem cells,biomaterials and clinical translation in bone tissue engineering[J]. Arch Biochem Biophys,2008,473(2):124-131.
|
[46] |
Yavari F, Rafiee MA, Rafiee J,et al. Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites[J]. ACS Appl Mater Interfaces,2010,2(10):2738-2743.
|
[47] |
Wan C, Frydrych M, Chen B. Strong and bioactive gelatin-graphene oxide nanocomposites[J]. Soft Matter,2011,7(13):6159-6166.
|
[48] |
Bortz DR, Garcia Heras E, Martin-Gullon I. Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites[J]. Macromolecules,2012,45(1):238-245.
|