切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 388 -392. doi: 10.3877/cma.j.issn.1674-1366.2022.06.009

综述

低温老化对第三代氧化锆影响的研究进展
纪雄1, 卢枳岑1, 于皓1,()   
  1. 1. 福建医科大学口腔医学院·附属口腔医院口腔修复科,福建省口腔疾病研究重点实验室,福建医科大学口腔生物力学及美学研究中心,福州 350002
  • 收稿日期:2022-06-24 出版日期:2022-12-01
  • 通信作者: 于皓

Research progress on low-temperature degradation of the third-generation zirconia

Xiong Ji1, Zhicen Lu1, Hao Yu1,()   

  1. 1. Department of Prosthodontics, School and Hospital of Stomatology, Fujian Medical University & Fujian Key Laboratory of Oral Diseases & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou 350002, China
  • Received:2022-06-24 Published:2022-12-01
  • Corresponding author: Hao Yu
  • Supported by:
    Research Fund of Department of Education, Fujian Province(JAT190229)
引用本文:

纪雄, 卢枳岑, 于皓. 低温老化对第三代氧化锆影响的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(06): 388-392.

Xiong Ji, Zhicen Lu, Hao Yu. Research progress on low-temperature degradation of the third-generation zirconia[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2022, 16(06): 388-392.

氧化锆因其良好的力学性能和生物相容性,被广泛应用于口腔修复治疗中。然而,第一代和第二代氧化锆半透性较差,前牙区美学修复效果不够理想。此外,前两代氧化锆易受低温老化影响,力学性能下降。第三代氧化锆在前两代基础上改变了氧化锆的晶相组成,提高立方相的含量,显著增加了材料的半透性。但是,低温老化对第三代氧化锆性能的影响,尚缺乏系统研究。因此,本文系统阐述低温老化对第三代氧化锆力学性能、物理性能和光学性能的影响,以期对氧化锆材料的应用及发展提供帮助。

Zirconia has been introduced into dental practice for its excellent mechanical properties and biocompatibility. However, the translucency of the first and second generations of zirconia is not sufficient for esthetic restorations. The first and second generations of zirconia are also susceptible to low-temperature degradation, which results in the compromised mechanical properties. By increasing the content of cubic phase, different crystal structure of the third-generation zirconia obtained, and the translucency is remarkably increased. Nevertheless, whether the performances of third-generation zirconia would be affected by low-temperature degradation remains unclear. This review comprehensively summarized the mechanical, physical and optical properties of the third-generation zirconia after low-temperature degradation, to provide theoretical basis for the development and clinical application of zirconia restorations.

表1 三代氧化锆的晶相与性能[12,13]
[1]
Kelly JRDenry I. Stabilized zirconia as a structural ceramic:An overview[J]. Dent Mater200824(3):289-298. DOI:10.1016/j.dental.2007.05.005.
[2]
Lughi VSergo V. Low temperature degradation - aging - of zirconia:A critical review of the relevant aspects in dentistry[J]. Dent Mater201026(8):807-820. DOI:10.1016/j.dental.2010.04.006.
[3]
Lucas TJLawson NCJanowski GM,et al. Effect of grain size on the monoclinic transformation,hardness,roughness,and modulus of aged partially stabilized zirconia[J]. Dent Mater201531(12):1487-1492. DOI:10.1016/j.dental.2015.09.014.
[4]
黎日照,付强,李丽娟,等.低温时效对牙科氧化锆陶瓷表面硬度的影响[J/OL].中华口腔医学研究杂志(电子版)20137(2):112-116. DOI:10.3877/cma.j.issn.1674-1366.2013.02.006.
[5]
Inokoshi MZhang FDe Munck J,et al. Influence of sintering conditions on low-temperature degradation of dental zirconia[J]. Dent Mater201430(6):669-678. DOI:10.1016/j.dental.2014.03.005.
[6]
Michael JLEva MVLeslie AR,et al. Low-temperature aging of zirconia ferrules for optical connectors[J]. J Am Ceram Soc200184(11):2731-2733. DOI:10.1111/j.1151-2916.2001.tb01085.x.
[7]
Camposilvan ELeone RGremillard L,et al. Aging resistance,mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications[J]. Dent Mater201834(6):879-890. DOI:10.1016/j.dental.2018.03.006.
[8]
吕季喆,李怡,刘晓强,等.口腔修复氧化锆陶瓷低温老化的研究进展[J].中华口腔医学杂志202257(4):418-423. DOI:10.3760/cma.j.cn112144-20211227-00571.
[9]
Xin GTilman S. Water incorporation in tetragonal zirconia[J]. J Am Ceram Soc200487(4):746-748. DOI:10.1111/j.1551-2916.2004.00746.x.
[10]
Zhang FInokoshi MBatuk M,et al. Strength,toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations[J]. Dent Mater201632(12):e327-e337. DOI:10.1016/j.dental.2016.09.025.
[11]
张晓旭,朱东彬,梁金生.齿科氧化锆陶瓷水热稳定性研究进展[J].无机材料学报202035(7):759-768. DOI:10.15541/jim20190401.
[12]
Zhang YLawn BR. Novel zirconia materials in dentistry[J]. J Dent Res201897(2):140-147. DOI:10.1177/0022034517737483.
[13]
万乾炳.口腔氧化锆修复材料分代之我见[J].国际口腔医学杂志202148(2):125-128. DOI:10.7518/gjkq.2021023.
[14]
Zhang Y. Making yttria-stabilized tetragonal zirconia translucent [J]. Dent Mater201430(10):1195-1203. DOI:10.1016/j.dental.2014.08.375.
[15]
Sato TShimada M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water[J]. J Am Ceram Soc198568(6):356-359. DOI:10.1111/j.1151-2916.1985.tb15239.x.
[16]
Chevalier JDeville SMünch E,et al. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis[J]. Biomaterials200425(24):5539-5545. DOI:10.1016/j.biomaterials.2004.01.002.
[17]
Flinn BDRaigrodski AJMancl LA,et al. Influence of aging on flexural strength of translucent zirconia for monolithic restorations [J]. J Prosthet Dent2017117(2):303-309. DOI:10.1016/j.prosdent.2016.06.010.
[18]
Homaei EFarhangdoost KTsoi JKH,et al. Static and fatigue mechanical behavior of three dental CAD/CAM ceramics[J]. J Mech Behav Biomed Mater201659:304-313. DOI:10.1016/j.jmbbm.2016.01.023.
[19]
Kengtanyakich SPeampring C. An experimental study on hydrothermal degradation of cubic-containing translucent zirconia [J]. J Adv Prosthodont202012(5):265-272. DOI:10.4047/jap.2020.12.5.265.
[20]
Alfrisany NMde Souza GM. Surface and bulk properties of zirconia as a function of composition and aging[J]. J Mech Behav Biomed Mater2022126:104994. DOI:10.1016/j.jmbbm.2021.104994.
[21]
Muñoz EMLonghini DAntonio SG,et al. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia [J]. J Dent201763:94-102. DOI:10.1016/j.jdent.2017.05.021.
[22]
Prado PHCOMonteiro JBCampos TMB,et al. Degradation kinetics of high-translucency dental zirconias:Mechanical properties and in-depth analysis of phase transformation[J]. J Mech Behav Biomed Mater2020102:103482. DOI:10.1016/j.jmbbm.2019.103482.
[23]
Jerman EWiedenmann FEichberger M,et al. Effect of high-speed sintering on the flexural strength of hydrothermal and thermo-mechanically aged zirconia materials[J]. Dent Mater202036(9):1144-1150. DOI:10.1016/j.dental.2020.05.013.
[24]
Lümkemann NStawarczyk B. Impact of hydrothermal aging on the light transmittance and flexural strength of colored yttria-stabilized zirconia materials of different formulations[J]. J Prosthet Dent2021125(3):518-526. DOI:10.1016/j.prosdent.2020.01.016.
[25]
Wiskott HWNicholls JIBelser UC. Stress fatigue:Basic principles and prosthodontic implications[J]. Int J Prosthodont19958(2):105-116.
[26]
Pereira GKRGuilardi LFDapieve KS,et al. Mechanical reliability,fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations[J]. J Mech Behav Biomed Mater201885:57-65. DOI:10.1016/j.jmbbm.2018.05.029.
[27]
Prado PHCODapieve KSCampos TMB,et al. Effect of hydrothermal and mechanical aging on the fatigue performance of high-translucency zirconias[J]. Dent Mater202238(6):1060-1071. DOI:10.1016/j.dental.2022.04.021.
[28]
Yoshimura MNoma TKawabata K,et al. Role of H2O on the degradation process of Y-TZP[J]. J Mater Sci Lett19876(4):465-467. DOI:10.1007/BF01756800.
[29]
马德隆,包亦望,万德田,等.陶瓷薄基板材料裂纹预制与断裂韧性评价[J].无机材料学报202136(7):733-737. DOI:10.15541/jim20200621.
[30]
Peampring CKengtanyakich S. Surface roughness and translucency of various translucent zirconia ceramics after hydrothermal aging[J]. Eur J Dent202216(4):761-767. DOI:10.1055/s-0041-1736415.
[31]
Mandikos MNMcGivney GPDavis E,et al. A comparison of the wear resistance and hardness of indirect composite resins[J]. J Prosthet Dent200185(4):386-395. DOI:10.1067/mpr.2001.114267.
[32]
de Araújo-Júnior ENSBergamo ETPBastos TMC,et al. Ultra-translucent zirconia processing and aging effect on microstructural,optical,and mechanical properties[J]. Dent Mater202238(4):587-600. DOI:10.1016/j.dental.2022.02.016.
[33]
Amarante JEVSoares Pereira MVde Souza GM,et al. Effect of hydrothermal aging on the properties of zirconia with different levels of translucency[J]. J Mech Behav Biomed Mater2020109:103847. DOI:10.1016/j.jmbbm.2020.103847.
[34]
Kou WGarbrielsson KBorhani A,et al. The effects of artificial aging on high translucent zirconia[J]. Biomater Investig Dent20196(1):54-60. DOI:10.1080/26415275.2019.1684201.
[35]
Hatanaka GRPolli GSAdabo GL. The mechanical behavior of high-translucent monolithic zirconia after adjustment and finishing procedures and artificial aging[J]. J Prosthet Dent2020123(2):330-337. DOI:10.1016/j.prosdent.2018.12.013.
[36]
Chan S-KFang YGrimsditch M,et al. Temperature dependence of the elastic moduli of monoclinic zirconia[J]. J Am Cerom Soc199174(7):1742-1744. DOI:10.1111/j.1151-2916.1991.tb07177.x.
[37]
Guicciardi SShimozono TPezzotti G. Ageing effects on the nanoindentation response of sub-micrometric 3Y-TZP ceramics [J]. J Mater Sci200742(2):718-722. DOI:10.1007/s10853-006-1177-2.
[38]
Yang HXu YLHong G,et al. Effects of low-temperature degradation on the surface roughness of yttria-stabilized tetragonal zirconia polycrystal ceramics:A systematic review and meta-analysis[J]. J Prosthet Dent2021125(2):222-230. DOI:10.1016/j.prosdent.2020.01.005.
[39]
Awad DStawarczyk BLiebermann A,et al. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness[J]. J Prosthet Dent2015113(6):534-540. DOI:10.1016/j.prosdent.2014.12.003.
[40]
Barizon KTBergeron CVargas MA,et al. Ceramic materials for porcelain veneers:part Ⅱ. Effect of material,shade,and thickness on translucency[J]. J Prosthet Dent2014112(4):864-870. DOI:10.1016/j.prosdent.2014.05.016.
[41]
Ilie NStawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions[J]. J Prosthet Dent2015113(2):114-121. DOI:10.1016/j.prosdent.2014.08.013.
[42]
Cinar SAltan B. Effect of veneering and hydrothermal aging on the translucency of newly introduced extra translucent and high translucent zirconia with different thicknesses[J]. Biomed Res Int2021:7011021. DOI:10.1155/2021/7011021.
[43]
Mešić KMajnarić IMehulić K. Effect of aging on the microstructure and optical properties of translucent ZrO2 ceramics [J]. Acta Stomatol Croat202155(2):114-128. DOI:10.15644/asc55/2/1.
[44]
Shen JDXie HFWu XY,et al. Evaluation of the effect of low-temperature degradation on the translucency and mechanical properties of ultra-transparent 5Y-TZP ceramics[J]. Ceram Int202046(1):553-559. DOI:10.1016/j.ceramint.2019.09.002.
[45]
Alghazzawi TF. The effect of extended aging on the optical properties of different zirconia materials[J]. J Prosthodont Res201761(3):305-314. DOI:10.1016/j.jpor.2016.11.002.
[46]
Khashayar GBain PASalari S,et al. Perceptibility and acceptability thresholds for colour differences in dentistry[J]. J Dent201442(6):637-644. DOI:10.1016/j.jdent.2013.11.017.
[1] 谢卓晏, 罗远利, 乔斌, 李锦瑞, 周志益, 王志刚, 任建丽. 肽功能化载GOD智能响应型相变纳米粒用于乳腺癌超声诊疗的实验研究[J]. 中华医学超声杂志(电子版), 2022, 19(08): 837-846.
[2] 梁亮, 伍昕宇, 晏奇, 施斌. 一体式和分体式氧化锆基台长期存留率及机械并发症的Meta分析[J]. 中华口腔医学研究杂志(电子版), 2021, 15(02): 103-109.
[3] 郭丽娜, 王晓东, 张新平, 简裕涛, 赵克. 代型材料力学性能对磨牙氧化锆全瓷冠断裂失效行为的影响[J]. 中华口腔医学研究杂志(电子版), 2019, 13(01): 7-12.
[4] 浩志超, 刘珂, 王林霞, 孟玉坤. 低温时效性对牙科用氧化锆耐磨性能的影响[J]. 中华口腔医学研究杂志(电子版), 2016, 10(01): 38-44.
[5] 刘颂, 王萌, 管文贤. 蛋白相分离的相关研究进展[J]. 中华普外科手术学杂志(电子版), 2019, 13(04): 430-432.
阅读次数
全文


摘要