切换至 "中华医学电子期刊资源库"

中华口腔医学研究杂志(电子版) ›› 2020, Vol. 14 ›› Issue (03) : 155 -163. doi: 10.3877/cma.j.issn.1674-1366.2020.03.005

所属专题: 文献

基础研究

MiR-520b调控Wnt/β-catenin信号通路促进舌鳞状细胞癌侵袭转移
翁军权1, 范海东1, 许力强1, 刘惠娟1,()   
  1. 1. 深圳市人民医院口腔医学中心,暨南大学第二临床医学院 518020
  • 收稿日期:2020-01-07 出版日期:2020-06-01
  • 通信作者: 刘惠娟

MiR-520b regulates Wnt/β-catenin signaling pathway to promote invasion and metastasis of tongue squamous cell carcinoma

Junquan Weng1, Haidong Fan1, Liqiang Xu1, Huijuan Liu1,()   

  1. 1. Stomatology Center, 2nd Clinical Medical College of Ji′nan University, Shenzhen People′s Hospital, Shenzhen 518020, China
  • Received:2020-01-07 Published:2020-06-01
  • Corresponding author: Huijuan Liu
  • About author:
    Corresponding author: Liu Huijuan, Email:
  • Supported by:
    National Natural Science Foundation of China(81900972); Natural Science Foundation of Guangdong(2017A030310624)
引用本文:

翁军权, 范海东, 许力强, 刘惠娟. MiR-520b调控Wnt/β-catenin信号通路促进舌鳞状细胞癌侵袭转移[J]. 中华口腔医学研究杂志(电子版), 2020, 14(03): 155-163.

Junquan Weng, Haidong Fan, Liqiang Xu, Huijuan Liu. MiR-520b regulates Wnt/β-catenin signaling pathway to promote invasion and metastasis of tongue squamous cell carcinoma[J]. Chinese Journal of Stomatological Research(Electronic Edition), 2020, 14(03): 155-163.

目的

研究miR-520b在舌鳞状细胞癌(TSCC)中的表达,探讨其在TSCC侵袭转移过程中的作用及分子机制。

方法

实时荧光定量聚合酶链反应(PCR)检测TSCC组织及细胞系中miR-520b的表达;沉默或过表达TSCC细胞株SCC-9和UM1中miR-520b的表达后,实时荧光定量PCR检测细胞上皮-间质转化(EMT)相关基因表达;Transwell小室验证细胞侵袭转移能力改变;TOP/FO双荧光素酶报告基因系统、实时荧光定量PCR、Western blot等检测miR-520b表达对Wnt/β-catenin信号通路的影响;生物信息学、Western blot及双荧光素酶实验验证miR-520b调控Wnt/β-catenin信号通路的潜在靶基因Dickkopf 1DKK1)。使用SPSS 21.0软件进行统计学分析,样本均数间比较采用Student′s t检验。

结果

与正常相邻组织(2.59±1.43)相比,miR-520b相对表达量在TSCC组织中显著上调(5.28 ± 1.63),差异有统计学意义(t = 16.04,P = 0.0005),并且与患者中更具侵袭性的TSCC表型正相关(5.81 ± 0.74 vs. 3.08 ± 0.89,t = 12.11,P = 0.0011);过表达miR-520b促进TSCC细胞侵袭转移(SCC-9:110.8 ± 17.8 vs. 74.7 ± 9.8,tSCC-9 = 32.58,PSCC-9 = 0.0011;UM1:178.8 ± 39.7 vs. 90.3 ± 22.5,tUM1 = 99.67,PUM1 = 0.0002),低表达则相反(SCC-9:74.7 ± 9.8 vs. 30.9 ± 7.8,tSCC-9 = -31.47,PSCC-9 = 0.0024;UM1:90.3 ± 22.5 vs. 35.7 ± 10.6,tUM1 = -37.89,PUM1 = 0.0019);此外,过表达miR-520b可靶向抑制DKK1,进而激活Wnt/β-catenin信号通路,促进TSCC细胞上皮-间质转化。

结论

MiR-520b在TSCC中高表达,可能通过抑制DKK1增强Wnt/β-catenin信号通路,促进TSCC侵袭转移。

Objective

To investigate the expression of miR-520b in tongue squamous cell carcinoma (TSCC) and explore its role and molecular mechanism in the invasion and metastasis of TSCC.

Methods

Real time quantity polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-520b in different tongue squamous cell carcinoma tissues and cell lines. After silencing or over-expressing miR-520b in tongue squamous cell carcinoma cell lines SCC-9 and UM1, RT-qPCR was used to detect the expression of EMT-related genes; transwell assay was used to verify cell invasion; dual luciferase assay, RT-qPCR, Western blot, etc. were used to detect the effect of miR-520b expression in Wnt/β-catenin signaling pathway; bioinformatics, Western blot, and dual luciferin enzyme experiments verified that miR-520b regulated the potential targeted gene Dickkopf 1 (DKK1) in Wnt/β-catenin signaling pathway. SPSS statistics 21.0 was used for analysis, and student′s t test was used for comparison between groups.

Results

Compared with normal adjacent tissues, miR-520b was significantly up-regulated in TSCC tissues (5.28±1.63 vs. 2.59±1.43, t=-16.04, P=0.0005) , and was significantly positively correlated with the more aggressive TSCC phenotype in patients (5.81±0.74 vs.3.08±0.89, t = 12.11, P = 0.0011) ; overexpression of miR-520b promoted invasion and metastasis of TSCC cells (SCC-9: 110.8±17.8 vs. 74.7±9.8, tSCC-9 = 32.58, PSCC-9 = 0.0011; UM1: 178.8±39.7 vs. 90.3±22.5, tUM1 = 99.67, PUM1 = 0.0002) , while low expression on the contrary suppressed (SCC-9: 74.7±9.8 vs. 30.9±7.8, tSCC-9 = -31.47, PSCC-9 = 0.0024; UM1: 90.3±22.5 vs. 35.7±10.6, tUM1 = -37.89, PUM1 = 0.0019) . In addition, overexpression of miR-520b inhibited DKK1 (negative regulator of Wnt/β-catenin signaling pathway) , thereby activating the Wnt/β-catenin signaling pathway and promoting epithelial-mesenchymal transition (EMT) of TSCC cells.

Conclusions

MiR-520b is highly expressed in TSCC, which may promote the invasion and metastasis of TSCC by inhibiting DKK1 and activating the Wnt/β-catenin signaling pathway.

表1 实时荧光定量聚合酶链反应(PCR)检测引物序列
图1 miR-520b在舌鳞状细胞癌(TSCC)组织和正常舌上皮组织(Normal)中的表达差异 A:miR-520b在52对TSCC组织和相邻正常组织中的表达散点图;B:发生了颈淋巴结转移的TSCC与无颈淋巴结转移TSCC中miR-520b的表达差异;C:miR-520b在人正常舌鳞状细胞(NTSC)和5个TSCC细胞系(SCC-9、SCC-15、SCC-25、UM1和UM2)中的相对表达量;aP<0.001,bP<0.05
图2 miR-520b对SCC-9和UM1细胞上皮-间质转化(EMT)相关基因和侵袭能力的影响 A ~ B:实时荧光定量PCR结果显示分别转染miR-520b mimics、inhibitor至SCC-9和UM1细胞后,细胞内miR-520b的表达变化;C:过表达或沉默miR-520b后,实时荧光定量PCR检测EMT相关分子(E-cadherinCK18N-cadherinVimentin)的表达变化;D:过表达或沉默miR-520b后,SCC-9和UM1细胞茜红素染色结果(低倍放大);E:过表达或沉默miR-520b后,SCC-9和UM1细胞侵袭转移能力的改变;aP<0.001,bP<0.01
图3 miR-520bWnt/β-catenin信号通路的影响 A:过表达或沉默miR-520b对SCC-9和UM1细胞TOP/FOP双荧光素酶活性的影响;B:过表达或沉默miR-520b对细胞核内β-catenin表达的影响;C:实时荧光定量PCR对Wnt/β-catenin下游效应基因C-mycLEF-1CCND1CD44MMP-7的检测;D:沉默β-cateninTCF4miR-520b过表达组SCC-9和UM1细胞TOP/FOP荧光活性的影响;E:沉默β-cateninTCF4miR-520b过表达组SCC-9和UM1细胞侵袭能力的影响;aP<0.001,bP<0.01,cP<0.05
图4 DKK1miR-520b调控Wnt/β-catenin信号通路的重要靶基因 A:生物信息学分析miR-520bDKK1调控的靶位点及局部突变序列;B:Western blot结果显示miR-520bDKK1表达的影响;C:荧光素酶报告基因实验验证miR-520bDKK1调控的靶位点;D:沉默DKK1miR-520b沉默组细胞TOP/FOP荧光素酶活性的影响;E:TSCC组织中miR-520bDKK1相关性分析;aP<0.001,bP<0.01
[1]
Torre LA, Bray F, Siegel RL,et al. Global cancer statistics,2012[J]. CA Cancer J Clin,2015,65(2):87-108. DOI:10.3322/caac.21262.
[2]
Lian IeB, Tseng YT, Su CC,et al. Progression of precancerous lesions to oral cancer:results based on the Taiwan National Health Insurance Database[J]. Oral Oncol,2013,49(5):427-430. DOI:10.1016/j.oraloncology.2012.12.004.
[3]
Xie B, Ding Q, Han H,et al. miRCancer:a microRNA-cancer association database constructed by text mining on literature[J]. Bioinformatics,2013,29(5):638-644. DOI:10.1093/bioinformatics/btt014.
[4]
Yu X, Li Z. MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma[J]. J Cell Mol Med,2016,20(1):10-16. DOI:10.1111/jcmm.12650.
[5]
Wong TS, Liu XB, Chung-Wai Ho A,et al. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling[J]. Int J Cancer,2008,123(2):251-257. DOI:10.1002/ijc.23583.
[6]
Siriwardena S, Tsunematsu T, Qi G,et al. Invasion-Related Factors as Potential Diagnostic and Therapeutic Targets in Oral Squamous Cell Carcinoma-A Review[J]. Int J Mol Sci,2018,19(5):E1462. DOI:10.3390/ijms19051462.
[7]
Škovierová H, Okajčeková T, Strnádel J,et al. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review)[J]. Int J Mol Med,2018,41(3):1187-1200. DOI:10.3892/ijmm.2017.3320.
[8]
Zhang JJ, Zhou XH, Zhou Y et al. Bufalin suppresses the migration and invasion of prostate cancer cells through HOTAIR,the sponge of miR-520b[J]. Acta Pharmacol Sin,2019,40(9):1228-1236. DOI:10.1038/s41401-019-0234-8.
[9]
Liu H, Du F, Sun L,et al. GATA6 suppresses migration and metastasis by regulating the miR-520b/CREB1 axis in gastric cancer[J]. Cell Death Dis,2019,10(2):35. DOI:10.1038/s41419-018-1270-x.
[10]
Cai Y, Dong ZY, Wang JY. MiR-520b inhibited metastasis and proliferation of non-small cell lung cancer by targeting CHAF1A[J]. Eur Rev Med Pharmacol Sci,2018,22(22):7742-7749. DOI:10.26355/eurrev_201811_16396.
[11]
Salinas-Vera YM, Marchat LA, Gallardo-Rincón D,et al. AngiomiRs:MicroRNAs driving angiogenesis in cancer(Review)[J]. Int J Mol Med,2019,43(2):657-670. DOI:10.3892/ijmm.2018.4003.
[12]
Guan R, Cai S, Sun M,et al. Upregulation of miR-520b promotes ovarian cancer growth[J]. Oncol Lett,2017,14(3):3155-3161. DOI:10.3892/ol.2017.6552.
[13]
Liu X, Liu J, Zhang X,et al. MiR-520b promotes the progression of non-small cell lung cancer through activating Hedgehog pathway[J]. J Cell Mol Med,2019,23(1):205-215. DOI:10.1111/jcmm.13909.
[14]
Hu N, Zhang J, Cui W,et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8[J]. J Biol Chem,2011,286(15):13714-13722. DOI:10.1074/jbc.M110.204131.
[15]
Zhang W, Kong G, Zhang J,et al. MicroRNA-520b inhibits growth of hepatoma cells by targeting MEKK2 and cyclin D1[J]. PLoS One,2012,7(2):e31450. DOI:10.1371/journal.pone.0031450.
[16]
Li M, Bu X, Cai B,et al. Biological role of metabolic reprogramming of cancer cells during epithelial-mesenchymal transition (Review)[J]. Oncol Rep,2019,41(2):727-741. DOI:10.3892/or.2018.6882.
[17]
Wang WX, Yu HL, Liu X. MiR-9-5p suppresses cell metastasis and epithelial-mesenchymal transition through targeting FOXP2 and predicts prognosis of colorectal carcinoma[J]. Eur Rev Med Pharmacol Sci,2019,23(15):6467-6477. DOI:10.26355/eurrev_201908_18530.
[18]
Kim EJ, Kim JS, Lee S,et al. QKI,a miR-200 target gene,suppresses epithelial-to-mesenchymal transition and tumor growth[J]. Int J Cancer,2019,145(6):1585-1595. DOI:10.1002/ijc.32372.
[19]
Gulei D, Magdo L, Jurj A,et al. The silent healer:miR-205-5p up-regulation inhibits epithelial to mesenchymal transition in colon cancer cells by indirectly up-regulating E-cadherin expression[J]. Cell Death Dis,2018,9(2):66. DOI:10.1038/s41419-017-0102-8.
[20]
Johansson J, Berg T, Kurzejamska E,et al. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition,invasion and metastasis in breast cancer[J]. Oncogene,2013,32(50):5614-5624. DOI:10.1038/onc.2013.322.
[21]
Luo Y, Wu J, Wu Q,et al. miR-577 Regulates TGF-β Induced Cancer Progression through a SDPR-Modulated Positive-Feedback Loop with ERK-NF-κB in Gastric Cancer[J]. Mol Ther,2019,27(6):1166-1182. DOI:10.1016/j.ymthe.2019.02.002.
[22]
Xu X, Liu M. miR-522 stimulates TGF-β/Smad signaling pathway and promotes osteosarcoma tumorigenesis by targeting PPM1A[J]. J Cell Biochem,2019,120(10):18425-18434. DOI:10.1002/jcb.29160.
[23]
Gurzu S, Kobori L, Fodor D,et al. Epithelial Mesenchymal and Endothelial Mesenchymal Transitions in Hepatocellular Carcinoma:A Review[J]. Biomed Res Int,2019(1):1-12. DOI:10.1155/2019/2962580.
[24]
Teeuwssen M, Fodde R. Wnt Signaling in Ovarian Cancer Stemness,EMT,and Therapy Resistance[J]. J Clin Med,2019,8(10):1658. DOI:10.3390/jcm8101658.
[25]
Wang C, Xu X, Jin H,et al. Nicotine may promote tongue squamous cell carcinoma progression by activating the Wnt/β-catenin and Wnt/PCP signaling pathways[J]. Oncol Lett,2017,13(5):3479-3486. DOI:10.3892/ol.2017.5899.
[26]
Jing Y, Cui D, Guo W,et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition[J]. Cancer Lett,2014,348(1-2):135-145. DOI:10.1016/j.canlet.2014.03.018.
[27]
Zhang X, Tian Y, Yang Y,et al. Development of anticancer agents targeting the Hedgehog signaling[J]. Cell Mol Life Sci,2017,74(15):2773-2782. DOI:10.1007/s00018-017-2497-x.
[28]
Liu P, Chen B, Gu Y,et al. PNMA1,regulated by miR-33a-5p,promotes proliferation and EMT in hepatocellular carcinoma by activating the Wnt/β-catenin pathway[J]. Biomed Pharmacother,2018,108:492-499. DOI:10.1016/j.biopha.2018.09.059.
[29]
Huang X, Zhu H, Gao Z,et al. Wnt7a activates canonical Wnt signaling,promotes bladder cancer cell invasion,and is suppressed by miR-370-3p[J]. J Biol Chem,2018,293(18):6693-6706. DOI:10.1074/jbc.RA118.001689.
[30]
Croset M, Pantano F, Kan C,et al. MicroRNA-30 family members inhibit breast cancer invasion,osteomimicry,and bone destruction by directly targeting multiple bone metastasis-associated genes[J]. Cancer Res,2018,78(18):5259-5273. DOI:10.1158/0008-5472.CAN-17-3058.
[31]
Feng ZY, Xu XH, Cen DZ,et al. miR-590-3p promotes colon cancer cell proliferation via Wnt/β-catenin signaling pathway by inhibiting WIF1 and DKK1[J]. Eur Rev Med Pharmacol Sci,2017,21(21):4844-4852.
[1] 张文涵, 王成. 瘢痕鳞状细胞癌的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 59-64.
[2] 岳志浩, 王晶, 闫子玉, 葛娜, 许向亮, 单小峰, 崔念晖. 牙槽外科相关舌神经损伤早期诊断及治疗中磁共振神经成像技术的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 413-417.
[3] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[4] 胡伟涛, 李星瀚, 刘琦, 孟贺, 马琳, 邓永强. 微小核糖核酸-21在口腔鳞状细胞癌中作为生物学标志物的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(05): 328-332.
[5] 黄优, 侯伟, 潘永初, 王林. 两种功能矫治器在儿童开HE畸形治疗中的对比研究[J]. 中华口腔医学研究杂志(电子版), 2022, 16(05): 281-286.
[6] 周炼, 周航, 张东强, 徐海涛. 改良舌弓治疗下颌第一磨牙异位萌出的临床应用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 94-99.
[7] 李众, 姚小武, 陈仕生, 卢子正, 林敏校, 桂心伟. Toll样受体9和环氧合酶2在口腔鳞状细胞癌及癌旁组织中的表达意义[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 333-340.
[8] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[9] 李永宁, 付雪芹, 李英, 刘鹏, 刘松柏, 潘耀振. 基因相似序列家族成员126A靶向调控波形蛋白促进胰腺癌细胞侵袭和迁移及其机制[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 139-144.
[10] 魏志鸿, 郭娟, 江哲龙, 江艺, 吕立志. miR-4458靶向结合BZW2对肝癌细胞增殖、迁移和侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 108-113.
[11] 邬杰忠, 柯春连, 陈少宏, 刘波, 姚志成. circZKSCAN1抑制肝癌细胞侵袭转移的机制[J]. 中华肝脏外科手术学电子杂志, 2022, 11(01): 92-97.
[12] 朱倩, 陈怡然, 侍超, 沈晶尧, 徐亮, 应杰, 胡立平. miR-429在胰腺导管腺癌患者预后中的价值及作用机制[J]. 中华肝脏外科手术学电子杂志, 2021, 10(06): 629-635.
[13] 郭永坤, 单峤, 付旭东, 李培栋, 谢井伟, 周少龙, 刘婉清, 刘春颖. 显微血管减压术治疗原发性舌咽神经痛[J]. 中华神经创伤外科电子杂志, 2022, 08(05): 318-319.
[14] 陈星月, 陈新龙, 王逸平, 刘向新, 赵宏胜. 舌下微循环监测对脓毒症休克患者并发急性肾损伤的预测价值[J]. 中华重症医学电子杂志, 2022, 08(02): 147-152.
[15] 王昊, 明倩文, 王斌, 卢太坤, 张海宁. 利奈唑胺致黑毛舌的临床诊断学特征[J]. 中华诊断学电子杂志, 2023, 11(04): 254-260.
阅读次数
全文


摘要