[1] |
Khan P, Fatima M, Khan MA,et al. Emerging role of chemokines in small cell lung cancer:Road signs for metastasis,heterogeneity,and immune response[J]. Semin Cancer Biol, 2022, 87:117-126. DOI: 10.1016/j.semcancer.2022.11.005.
|
[2] |
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy[J]. Nat Rev Immunol, 2017, 17(9):559-572. DOI: 10.1038/nri.2017.49.
|
[3] |
Ratajczak MZ, Zuba-Surma E, Kucia M,et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis,regeneration and tumorigenesis[J]. Leukemia, 2006, 20(11):1915-1924. DOI: 10.1038/sj.leu.2404357.
|
[4] |
Broussas M, Boute N, Akla B,et al. A new anti-CXCR4 antibody that blocks the CXCR4/SDF-1 axis and mobilizes effector cells[J]. Mol Cancer Ther, 2016, 15(8):1890-1899. DOI: 10.1158/1535-7163.MCT-16-0041.
|
[5] |
Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development[J]. Mol Biol Rep, 2022, 49(4):3307-3320. DOI: 10.1007/s11033-021-07069-3.
|
[6] |
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy[J]. Immunol Lett, 2020, 217:91-115. DOI: 10.1016/j.imlet.2019.11.007.
|
[7] |
Altschul SF, Madden TL, Schäffer AA,et al. Gapped BLAST and PSI-BLAST:A new generation of protein database search programs[J]. Nucleic Acids Res, 1997, 25(17):3389-3402. DOI: 10.1093/nar/25.17.3389.
|
[8] |
Janssens R, Struyf S, Proost P. Pathological roles of the homeostatic chemokine CXCL12[J]. Cytokine Growth Factor Rev, 2018, 44:51-68. DOI: 10.1016/j.cytogfr.2018.10.004.
|
[9] |
Gros J, Manceau M, Thomé V,et al. A common somitic origin for embryonic muscle progenitors and satellite cells[J]. Nature, 2005, 435(7044):954-958. DOI: 10.1038/nature03572.
|
[10] |
Kim M, Kim DI, Kim EK,et al. CXCR4 overexpression in human adipose tissue-derived stem cells improves homing and engraftment in an animal limb ischemia model[J]. Cell Transplantation, 2017, 26(2):191-204. DOI: 10.3727/096368916X692708.
|
[11] |
Cui L, Qu H, Xiao T,et al. Stromal cell-derived factor-1 and its receptor CXCR4 in adult neurogenesis after cerebral ischemia[J]. Restor Neurol Neurosci, 2013, 31(3):239-251. DOI: 10.3233/RNN-120271.
|
[12] |
Petri RM, Hackel A, Hahnel K,et al. Activated tissue-resident mesenchymal stromal cells regulate natural killer cell immune and tissue-regenerative function[J]. Stem Cell Reports, 2017, 9(3):985-998. DOI: 10.1016/j.stemcr.2017.06.020.
|
[13] |
Ullah TR. The role of CXCR4 in multiple myeloma:Cells′journey from bone marrow to beyond[J]. J Bone Oncol, 2019, 17:100253. DOI: 10.1016/j.jbo.2019.100253.
|
[14] |
Li JH, Hamdan FF, Kim SK,et al. Ligand-specific changes in M3 muscarinic acetylcholine receptor structure detected by a disulfide scanning strategy[J]. Biochemistry, 2008, 47(9):2776-2788. DOI: 10.1021/bi7019113.
|
[15] |
|
[16] |
Singh P, Mohammad KS, Pelus LM. CXCR4 expression in the bone marrow microenvironment is required for hematopoietic stem and progenitor cell maintenance and early hematopoietic regeneration after myeloablation[J]. Stem Cells, 2020, 38(7):849-859. DOI: 10.1002/stem.3174.
|
[17] |
García-Cuesta EM, Santiago CA, Vallejo-Díaz J,et al. The role of the CXCL12/CXCR4/ACKR3 axis in autoimmune diseases[J]. Front Endocrinol(Lausanne), 2019, 10:585. DOI: 10.3389/fendo.2019.00585.
|
[18] |
Merino JJ, Bellver-Landete V, Oset-Gasque MJ,et al. CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration:Focus in CNS repair[J]. J Cell Physiol, 2015, 230(1):27-42. DOI: 10.1002/jcp.24695.
|
[19] |
Décaillot FM, Kazmi MA, Lin Y,et al. CXCR7/CXCR4 heterodimer constitutively recruits beta-arrestin to enhance cell migration[J]. J Biol Chem, 2011, 286(37):32188-32197. DOI: 10.1074/jbc.M111.277038.
|
[20] |
Yamaguchi J, Kusano KF, Masuo O,et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization[J]. Circulation, 2003, 107(9):1322-1328. DOI: 10.1161/01.cir.0000055313.77510.22.
|
[21] |
Horton JE, Raisz LG, Simmons HA,et al. Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes[J]. Science, 1972, 177(4051):793-795. DOI: 10.1126/science.177.4051.793.
|
[22] |
Arron JR, Choi Y. Bone versus immune system[J]. Nature, 2000, 408(6812):535-536. DOI: 10.1038/35046196.
|
[23] |
Takayanagi H, Ogasawara K, Hida S,et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma[J]. Nature, 2000, 408(6812):600-605. DOI: 10.1038/35046102.
|
[24] |
Okamoto K, Nakashima T, Shinohara M,et al. Osteoimmunology:The conceptual framework unifying the immune and skeletal systems[J]. Physiol Rev, 2017, 97(4):1295-1349. DOI: 10.1152/physrev.00036.2016.
|
[25] |
Tsukasaki M, Takayanagi H. Osteoimmunology:Evolving concepts in bone-immune interactions in health and disease[J]. Nat Rev Immunol, 2019, 19(10):626-642. DOI: 10.1038/s41577-019-0178-8.
|
[26] |
Takayanagi H. Osteoimmunology as an intrinsic part of immunology[J]. Int Immunol, 2021, 33(12):673-678. DOI: 10.1093/intimm/dxab057.
|
[27] |
Greenbaum A, Hsu YMS, Day RB,et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J]. Nature, 2013, 495(7440):227-230. DOI: 10.1038/nature11926.
|
[28] |
Yu VWC, Saez B, Cook C,et al. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow[J]. J Exp Med, 2015, 212(5):759-774. DOI: 10.1084/jem.20141843.
|
[29] |
Mansour A, Abou-Ezzi G, Sitnicka E,et al. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow[J]. J Exp Med, 2012, 209(3):537-549. DOI: 10.1084/jem.20110994.
|
[30] |
Teufel S, Grötsch B, Luther J,et al. Inhibition of bone remodeling in young mice by bisphosphonate displaces the plasma cell niche into the spleen[J]. J Immunol, 2014, 193(1):223-233. DOI: 10.4049/jimmunol.1302713.
|
[31] |
Charles JF, Hsu LY, Niemi EC,et al. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function[J]. J Clin Invest, 2012, 122(12):4592-4605. DOI: 10.1172/JCI60920.
|
[32] |
Sato M, Asada N, Kawano Y,et al. Osteocytes regulate primary lymphoid organs and fat metabolism[J]. Cell Metab, 2013, 18(5):749-758. DOI: 10.1016/j.cmet.2013.09.014.
|
[33] |
Dar HY, Azam Z, Anupam R,et al. Osteoimmunology:The Nexus between bone and immune system[J]. Front Biosci (Landmark Ed), 2018, 23(3):464-492. DOI: 10.2741/4600.
|
[34] |
Weitzmann MN, Ofotokun I. Physiological and pathophysiological bone turnover-role of the immune system[J]. Nat Rev Endocrinol, 2016, 12(9):518-532. DOI: 10.1038/nrendo.2016.91.
|
[35] |
Guder C, Gravius S, Burger C,et al. Osteoimmunology:A current update of the interplay between bone and the immune system[J]. Front Immunol, 2020, 11:58. DOI: 10.3389/fimmu.2020.00058.
|
[36] |
Gravallese EM, Schett G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis[J]. Nat Rev Rheumatol, 2018, 14(11):631-640. DOI: 10.1038/s41584-018-0091-8.
|
[37] |
Huang Y, Tian C, Li Q,et al. TET1 knockdown inhibits Porphyromonas gingivalis LPS/IFN-γ-Induced M1 macrophage polarization through the NF-κB pathway in THP-1 cells[J]. Int J Mol Sci, 2019, 20(8):E2023. DOI: 10.3390/ijms20082023.
|
[38] |
Yu M, D′Amelio P, Tyagi AM,et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice[J]. EMBO Rep, 2018, 19(1):156-171. DOI: 10.15252/embr.201744421.
|
[39] |
Viniegra A, Goldberg H, Çil Ç,et al. Resolving macrophages counter osteolysis by anabolic actions on bone cells[J]. J Dent Res, 2018, 97(10):1160-1169. DOI: 10.1177/0022034518777973.
|
[40] |
Ara T, Tokoyoda K, Sugiyama T,et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny[J]. Immunity, 2003, 19(2):257-267. DOI: 10.1016/s1074-7613(03)00201-2.
|
[41] |
Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning[J]. Cardiovasc Res, 2012, 94(3):400-407. DOI: 10.1093/cvr/cvs132.
|
[42] |
Petit I, Szyper-Kravitz M, Nagler A,et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4[J]. Nat Immunol, 2002, 3(7):687-694. DOI: 10.1038/ni813.
|
[43] |
Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration:Adult,embryonic,and induced pluripotent stem cells[J]. Circulation, 2010, 122(5):517-526. DOI: 10.1161/CIRCULATIONAHA.109.881441.
|
[44] |
Ko IK, Lee SJ, Atala A,et al. In situ tissue regeneration through host stem cell recruitment[J]. Exp Mol Med, 2013, 45:e57. DOI: 10.1038/emm.2013.118.
|
[45] |
Ganju RK, Brubaker SA, Meyer J,et al. The alpha-chemokine,stromal cell-derived factor-1alpha,binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways[J]. J Biol Chem, 1998, 273(36):23169-23175. DOI: 10.1074/jbc.273.36.23169.
|
[46] |
|
[47] |
Trautmann F, Cojoc M, Kurth I,et al. CXCR4 as biomarker for radioresistant cancer stem cells[J]. Int J Radiat Biol, 2014, 90(8):687-699. DOI: 10.3109/09553002.2014.906766.
|
[48] |
|
[49] |
Fadini GP, Ferraro F, Quaini F,et al. Concise review:Diabetes,the bone marrow niche,and impaired vascular regeneration[J]. Stem Cells Transl Med, 2014, 3(8):949-957. DOI: 10.5966/sctm.2014-0052.
|
[50] |
Wei JN, Cai F, Wang F,et al. Transplantation of CXCR4 overexpressed mesenchymal stem cells augments regeneration in degenerated intervertebral discs[J]. DNA Cell Biol, 2016, 35(5):241-248. DOI: 10.1089/dna.2015.3118.
|
[51] |
Liekens S, Schols D, Hatse S. CXCL12-CXCR4 axis in angiogenesis,metastasis and stem cell mobilization[J]. Curr Pharm Des, 2010, 16(35):3903-3920. DOI: 10.2174/138161210794455003.
|
[52] |
Mirshahi F, Pourtau J, Li H,et al. SDF-1 activity on microvascular endothelial cells:Consequences on angiogenesis in in vitro and in vivo models[J]. Thromb Res, 2000, 99(6):587-594. DOI: 10.1016/S0049-3848(00)00292-9.
|
[53] |
Kijowski J, Baj-Krzyworzeka M, Majka M,et al. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells[J]. Stem Cells, 2001, 19(5):453-466. DOI: 10.1634/stemcells.19-5-453.
|
[54] |
Molino M, Woolkalis MJ, Prevost N,et al. CXCR4 on human endothelial cells can serve as both a mediator of biological responses and as a receptor for HIV-2[J]. Biochim Biophys Acta, 2000, 1500(2):227-240. DOI: 10.1016/s0925-4439(99)00110-6.
|
[55] |
Döring Y, Pawig L, Weber C,et al. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease[J]. Front Physiol, 2014, 5:212. DOI: 10.3389/fphys.2014.00212.
|
[56] |
Jin F, Brockmeier U, Otterbach F,et al. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model:Hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation[J]. Mol Cancer Res, 2012, 10(8):1021-1031. DOI: 10.1158/1541-7786.MCR-11-0498.
|
[57] |
Wagner NM, Bierhansl L, Nöldge-Schomburg G,et al. Toll-like receptor 2-blocking antibodies promote angiogenesis and induce ERK1/2 and AKT signaling via CXCR4 in endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2013, 33(8):1943-1951. DOI: 10.1161/ATVBAHA.113.301783.
|
[58] |
Salvucci O, Basik M, Yao L,et al. Evidence for the involvement of SDF-1 and CXCR4 in the disruption of endothelial cell-branching morphogenesis and angiogenesis by TNF-alpha and IFN-gamma[J]. J Leukoc Biol, 2004, 76(1):217-226. DOI: 10.1189/jlb.1203609.
|
[59] |
Moser B, Loetscher P. Lymphocyte traffic control by chemokines[J]. Nat Immunol, 2001, 2(2):123-128. DOI: 10.1038/84219.
|
[60] |
Pozzobon T, Goldoni G, Viola A,et al. CXCR4 signaling in health and disease[J]. Immunol Lett, 2016, 177:6-15. DOI: 10.1016/j.imlet.2016.06.006.
|
[61] |
Payne D, Drinkwater S, Baretto R,et al. Expression of chemokine receptors CXCR4,CXCR5 and CCR7 on B and T lymphocytes from patients with primary antibody deficiency[J]. Clin Exp Immunol, 2009, 156(2):254-262. DOI: 10.1111/j.1365-2249.2009.03889.x.
|
[62] |
Nauseef WM, Borregaard N. Neutrophils at work[J]. Nat Immunol, 2014, 15(7):602-611. DOI: 10.1038/ni.2921.
|
[63] |
Uhl B, Vadlau Y, Zuchtriegel G,et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response[J]. Blood, 2016, 128(19):2327-2337. DOI: 10.1182/blood-2016-05-718999.
|
[64] |
Hampton HR, Bailey J, Tomura M,et al. Microbe-dependent lymphatic migration of neutrophils modulates lymphocyte proliferation in lymph nodes[J]. Nat Commun, 2015, 6:7139. DOI: 10.1038/ncomms8139.
|
[65] |
Martin C, Burdon PCE, Bridger G,et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence[J]. Immunity, 2003, 19(4):583-593. DOI: 10.1016/s1074-7613(03)00263-2.
|
[66] |
Leung TH, Snyder ER, Liu Y,et al. A cellular,molecular,and pharmacological basis for appendage regeneration in mice[J]. Genes Dev, 2015, 29(20):2097-2107. DOI: 10.1101/gad.267724.115.
|
[67] |
Chen H, Li G, Liu Y,et al. Pleiotropic roles of CXCR4 in wound repair and regeneration[J]. Front Immunol, 2021, 12:668758. DOI: 10.3389/fimmu.2021.668758.
|
[68] |
Gómez-Barrena E, Rosset P, Gebhard F,et al. Feasibility and safety of treating non-unions in tibia,femur and humerus with autologous,expanded,bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric,non-comparative trial[J]. Biomaterials, 2019, 196:100-108. DOI: 10.1016/j.biomaterials.2018.03.033.
|
[69] |
García-García A, de Castillejo CLF, Méndez-Ferrer S. BMSCs and hematopoiesis[J]. Immunol Lett, 2015, 168(2):129-135. DOI: 10.1016/j.imlet.2015.06.020.
|
[70] |
Hutchings G, Moncrieff L, Dompe C,et al. Bone regeneration,reconstruction and use of osteogenic cells;from basic knowledge,animal models to clinical trials[J]. J Clin Med, 2020, 9(1):E139. DOI: 10.3390/jcm9010139.
|
[71] |
Chen L, Li Y, Chen W,et al. Enhanced recruitment and hematopoietic reconstitution of bone marrow-derived mesenchymal stem cells in bone marrow failure by the SDF-1/CXCR4[J]. J Tissue Eng Regen Med, 2020, 14(9):1250-1260. DOI: 10.1002/term.3096.
|
[72] |
Zhao A, Chung M, Yang Y,et al. The SDF-1/CXCR4 signaling pathway directs the migration of systemically transplanted bone marrow mesenchymal stem cells towards the lesion site in a rat model of spinal cord injury[J]. Curr Stem Cell Res Ther, 2023, 18(2):216-230. DOI: 10.2174/1574888X17666220510163245.
|
[73] |
Liu N, Patzak A, Zhang J. CXCR4-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury[J]. Am J Physiol Renal Physiol, 2013, 305(7):F1064-F1073. DOI: 10.1152/ajprenal.00178.2013.
|
[74] |
Guang LG, Boskey AL, Zhu W. Regulatory role of stromal cell-derived factor-1 in bone morphogenetic protein-2-induced chondrogenic differentiation in vitro[J]. Int J Biochem Cell Biol, 2012, 44(11):1825-1833. DOI: 10.1016/j.biocel.2012.06.033.
|
[75] |
Potter ML, Smith K, Vyavahare S,et al. Characterization of differentially expressed miRNAs by CXCL12/SDF-1 in human bone marrow stromal cells[J]. Biomol Concepts, 2021, 12(1):132-143. DOI: 10.1515/bmc-2021-0015.
|
[76] |
Zhu W, Boachie-Adjei O, Rawlins BA,et al. A novel regulatory role for stromal-derived factor-1 signaling in bone morphogenic protein-2 osteogenic differentiation of mesenchymal C2C12 cells[J]. J Biol Chem, 2007, 282(26):18676-18685. DOI: 10.1074/jbc.M610232200.
|
[77] |
Kollet O, Dar A, Shivtiel S,et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells[J]. Nat Med, 2006, 12(6):657-664. DOI: 10.1038/nm1417.
|
[78] |
Zhang C, Zhang W, Zhu D,et al. Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy[J]. J Nanobiotechnology, 2022, 20(1):35. DOI: 10.1186/s12951-021-01231-6.
|
[79] |
Cross M, Smith E, Hoy D,et al. The global burden of hip and knee osteoarthritis:Estimates from the global burden of disease 2010 study[J]. Ann Rheum Dis, 2014, 73(7):1323-1330. DOI: 10.1136/annrheumdis-2013-204763.
|
[80] |
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis:Current understanding with therapeutic implications[J]. Arthritis Res Ther, 2017, 19(1):18. DOI: 10.1186/s13075-017-1229-9.
|
[81] |
Bagi CM, Berryman ER, Teo S,et al. Oral administration of undenatured native chicken typeⅡ collagen (UC-Ⅱ) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA)[J]. Osteoarthritis Cartilage, 2017, 25(12):2080-2090. DOI: 10.1016/j.joca.2017.08.013.
|
[82] |
Wang G, Li Y, Meng X,et al. The study of targeted blocking SDF-1/CXCR4 signaling pathway with three antagonists on MMPs,typeⅡ collagen,and aggrecan levels in articular cartilage of guinea pigs[J]. J Orthop Surg Res, 2020, 15(1):195. DOI: 10.1186/s13018-020-01646-1.
|
[83] |
Li J, Chen H, Zhang D,et al. The role of stromal cell-derived factor 1 on cartilage development and disease[J]. Osteoarthritis Cartilage, 2021, 29(3):313-322. DOI: 10.1016/j.joca.2020.10.010.
|
[84] |
Lu W, He Z, Shi J,et al. AMD3100 attenuates post-traumatic osteoarthritis by maintaining transforming growth factor-β1-induced expression of tissue inhibitor of metalloproteinase-3 via the phosphatidylinositol 3-kinase/akt pathway[J]. Front Pharmacol, 2019, 10:1554. DOI: 10.3389/fphar.2019.01554.
|
[85] |
Lu W, Shi J, Zhang J,et al. CXCL12/CXCR4 axis regulates aggrecanase activation and cartilage degradation in a post-traumatic osteoarthritis rat model[J]. Int J Mol Sci, 2016, 17(10):E1522. DOI: 10.3390/ijms17101522.
|
[86] |
Qin H, Zhao X, Hu YJ,et al. Inhibition of SDF-1/CXCR4 axis to alleviate abnormal bone formation and angiogenesis could improve the subchondral bone microenvironment in osteoarthritis[J]. Biomed Res Int, 2021:8852574. DOI: 10.1155/2021/8852574.
|
[87] |
Zhang Y, Li X, Li J,et al. Knee loading enhances the migration of adipose-derived stem cells to the osteoarthritic sites through the SDF-1/CXCR4 regulatory axis[J]. Calcif Tissue Int, 2022, 111(2):171-184. DOI: 10.1007/s00223-022-00976-y.
|
[88] |
Zhang X, Sun Y, Chen W,et al. Nanoparticle functionalization with genetically-engineered mesenchymal stem cell membrane for targeted drug delivery and enhanced cartilage protection[J]. Biomater Adv, 2022, 136:212802. DOI: 10.1016/j.bioadv.2022.212802.
|
[89] |
Zhou S, Lu H, Xiong M. Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis[J]. Front Immunol, 2021, 12:726747. DOI: 10.3389/fimmu.2021.726747.
|
[90] |
Bragg R, Gilbert W, Elmansi A M,et al. Stromal cell-derived factor-1 as a potential therapeutic target for osteoarthritis and rheumatoid arthritis[J]. Ther Adv Chronic Dis, 2019, 10:20406 22319882531. DOI: 10.1177/2040622319882531.
|
[91] |
Kim KW, Cho ML, Kim HR,et al. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes:Role of interleukin-17 and CD40L-CD40 interaction[J]. Arthritis and Rheumatism, 2007, 56(4):1076-1086. DOI: 10.1002/art.22439.
|
[92] |
Chen HT, Tsou HK, Hsu CJ,et al. Stromal cell-derived factor-1/CXCR4 promotes IL-6 production in human synovial fibroblasts[J]. J Cell Biochem, 2011, 112(4):1219-1227. DOI: 10.1002/jcb.23043.
|
[93] |
Peng L, Zhu N, Mao J,et al. Expression levels of CXCR4 and CXCL12 in patients with rheumatoid arthritis and its correlation with disease activity[J]. Exp Ther Med, 2020, 20(3):1925-1934. DOI: 10.3892/etm.2020.8950.
|
[94] |
Wang S, Zhou C, Zheng H,et al. Chondrogenic progenitor cells promote vascular endothelial growth factor expression through stromal-derived factor-1[J]. Osteoarthritis Cartilage, 2017, 25(5):742-749. DOI: 10.1016/j.joca.2016.10.017.
|
[95] |
Samarpita S, Rasool M. Cyanidin attenuates IL-17A cytokine signaling mediated monocyte migration and differentiation into mature osteoclasts in rheumatoid arthritis[J]. Cytokine, 2021, 142:155502. DOI: 10.1016/j.cyto.2021.155502.
|
[96] |
Cecchinato V, D′Agostino G, Raeli L,et al. Redox-mediated mechanisms fuel monocyte responses to CXCL12/HMGB1 in active rheumatoid arthritis[J]. Front Immunol, 2018, 9:2118. DOI: 10.3389/fimmu.2018.02118.
|
[97] |
He Y, Chen Y. The potential mechanism of the microbiota-gut-bone axis in osteoporosis:A review[J]. Osteoporos Int, 2022, 33(12):2495-2506. DOI: 10.1007/s00198-022-06557-x.
|
[98] |
Sözen T, Özişik L, Başaran NÇ. An overview and management of osteoporosis[J]. Eur J Rheumatol, 2017, 4(1):46-56. DOI: 10.5152/eurjrheum.2016.048.
|
[99] |
Liu Q, Zhang X, Jiao Y,et al. In vitro cell behaviors of bone mesenchymal stem cells derived from normal and postmenopausal osteoporotic rats[J]. Int J Mol Med, 2018, 41(2):669-678. DOI: 10.3892/ijmm.2017.3280.
|
[100] |
Garg P, Mazur MM, Buck AC,et al. Prospective review of mesenchymal stem cells differentiation into osteoblasts[J]. Orthop Surg, 2017, 9(1):13-19. DOI: 10.1111/os.12304.
|
[101] |
Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells[J]. Int J Biochem Cell Biol, 2013, 45(8):1813-1820. DOI: 10.1016/j.biocel.2013.05.034.
|
[102] |
Gilbert W, Bragg R, Elmansi AM,et al. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology[J]. Cytokine, 2019, 123:154783. DOI: 10.1016/j.cyto.2019.154783.
|
[103] |
Bai J, Ge G, Wang Q,et al. Engineering stem cell recruitment and osteoinduction via bioadhesive molecular mimics to improve osteoporotic bone-implant integration[J]. Research (Wash D C), 2022:9823784. DOI: 10.34133/2022/9823784.
|
[104] |
Hu Y, Li X, Zhang Q,et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss[J]. Bioact Mater, 2021, 6(9):2905-2913. DOI: 10.1016/j.bioactmat.2021.02.014.
|
[105] |
Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis:Framework and proposal of a new classification and case definition[J]. J Periodontol, 2018, 89(Suppl 1):S159-S172. DOI: 10.1002/JPER.18-0006.
|
[106] |
Sun X, Gao J, Meng X,et al. Polarized macrophages in periodontitis:Characteristics,function,and molecular signaling[J]. Front Immunol, 2021, 12:763334. DOI: 10.3389/fimmu.2021.763334.
|
[107] |
Bosshardt DD. The periodontal pocket:Pathogenesis,histopathology and consequences[J]. Periodontology 2000, 2018,76(1):43-50. DOI: 10.1111/prd.12153.
|
[108] |
Zhang X, Jin Y, Wang Q,et al. Autophagy-mediated regulation patterns contribute to the alterations of the immune microenvironment in periodontitis[J]. Aging (Albany NY), 2020, 13(1):555-577. DOI: 10.18632/aging.202165.
|
[109] |
Zhang Z, Zheng Y, Bian X,et al. Identification of key genes and pathways associated with oxidative stress in periodontitis[J]. Oxid Med Cell Longev, 2022:9728172. DOI: 10.1155/2022/9728172.
|
[110] |
Arjunan P, Meghil MM, Pi W,et al. Oral pathobiont activates anti-apoptotic pathway,promoting both immune suppression and oncogenic cell proliferation[J]. Sci Rep, 2018, 8(1):16607. DOI: 10.1038/s41598-018-35126-8.
|
[111] |
Yamashiro K, Ideguchi H, Aoyagi H,et al. High mobility Group Box 1 expression in oral inflammation and regeneration[J]. Front Immunol, 2020, 11:1461. DOI: 10.3389/fimmu.2020.01461.
|
[112] |
Luo H, Chen D, Li R,et al. Genetically engineered CXCR4-modified exosomes for delivery of miR-126 mimics to macrophages alleviate periodontitis[J]. J Nanobiotechnology. 2023, 21(1):116. DOI: 10.1186/s12951-023-01863-w.
|
[113] |
Mehta SA, Christopherson KW, Bhat-Nakshatri P,et al. Negative regulation of chemokine receptor CXCR4 by tumor suppressor p53 in breast cancer cells:Implications of p53 mutation or isoform expression on breast cancer cell invasion[J]. Oncogene, 2007, 26(23):3329-3337. DOI: 10.1038/sj.onc.1210120.
|
[114] |
Orimo A, Gupta PB, Sgroi DC,et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion[J]. Cell, 2005, 121(3):335-348. DOI: 10.1016/j.cell.2005.02.034.
|
[115] |
Chinni SR, Yamamoto H, Dong Z,et al. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone[J]. Mol Cancer Res, 2008, 6(3):446-457. DOI: 10.1158/1541-7786.MCR-07-0117.
|
[116] |
Lai TH, Fong YC, Fu WM,et al. Stromal cell-derived factor-1 increase alphavbeta3 integrin expression and invasion in human chondrosarcoma cells[J]. J Cell Physiol, 2009, 218(2):334-342. DOI: 10.1002/jcp.21601.
|
[117] |
Lu Y, Hu B, Guan GF,et al. SDF-1/CXCR4 promotes F5M2 osteosarcoma cell migration by activating the Wnt/β-catenin signaling pathway[J]. Med Oncol, 2015, 32(7):194. DOI: 10.1007/s12032-015-0576-0.
|
[118] |
Xi Y, Qi Z, Ma J,et al. PTEN loss activates a functional AKT/CXCR4 signaling axis to potentiate tumor growth and lung metastasis in human osteosarcoma cells[J]. Clin Exp Metastasis, 2020, 37(1):173-185. DOI: 10.1007/s10585-019-09998-7.
|
[119] |
Liu J, Feng G, Li Z,et al. Long non-coding RNA FEZF1-AS1 modulates CXCR4 to promote cell proliferation,warburg effect and suppress cell apoptosis in osteosarcoma by sponging miR-144[J]. Onco Targets Ther, 2020, 13:2899-2910. DOI: 10.2147/OTT.S235970.
|